~

PCI‘ WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(1) International Patent Classification 4 : (11) International Publication Number: WO 89/ 07377
H04M 15/26, 15/32 Al | 43) International Publication Date: 10 August 1989 (10.08.89)
(21) International Application Number: PCT/US89/00352 ‘Redwood City, CA 94061 (US). TAN, Seck-Eng ; 302 Easy
Street #48, Mountain View, CA 94043 (US). RADZYKE-
(22) International Filing Date: 27 Janunary 1989 (27.01.89) WYCZ, Tim, Omelan ; 7450 Shady Hollow Drive, Newark,
CA 94560 (US). DUPONT, Ronald ; 234, rue Principale, L-
’ . i 5366 Munsbach (LU). :

(31) Priority Application Number: 150,354
(74) Agents: LOVEJOY, David, E. et al.; Fliesler, Dubb, Meyer
(32) Priority Date: 29 January 1988 (29.01.88) and Lovejoy, 4 Embarcadero Center, Suite 400, San Francis-

. i co, CA 94111-4156 (US).

(33) Priority Country: uUs
(81) Designated States: AT (European patent), AU, BE (European
(71) Applicant: NETWORK EQUIPMENT TECHNOLOGIES, patent), CH (European patent), DE (European patent), FR
INC. [US/US]; 800 Saginaw Drive, Redwood City, CA (European patent), GB (European patent), IT (European
94063 (US). . patent), JP, LU (European patent), NL (European patent),

SE (European patent).

(72) Inventors: ROBINS, Paul, Andrew ; 116 Clipper Street, San
Francisco, CA 94114 (US). ALVIK, Paul, D. ; 19986 Beck-
man Place, Cupertino, CA 95014 (US). HELGESON, Chris-| Published
topher, Sean ; 1670 Tulane Drive, Mountain View, CA 94040 With international search report.
(US). GANNON, Michael, Richard ; 1012 Windsor Drive,
Menlo Park, CA 94025 (US). BISHOP, William, Allen ; 1165
Phyllis Court, Mountain View, CA 94040 (US). MUMAW,
Sandra, Leigh ; 3502 Ramstad Drive, San Jose; CA 95127
(US). FORKISH, Karen, Lee ; 1617 Union Avenue,

(54) Title: COMMUNICATIONS NETWORK STATE AND TOPOLOGY MONITOR

(67

: 70
SWi——- - — ((69

\SV— MON 2

66.
65\)

MON 1 —SW

ROQELE-1M=Z

/'sw 71

SW -+ L~

(5T) Abstract S ——

A system gathers and displays information concerning status of a communications network without overloading the
communic¢ations channels in the network. The monitoring system includes a monitor node (65, 69), including an operator
input interface. The monitor node (65, 69) is coupled to a first switching node (66, 70) in the distributed switching nodes of
the network. The monitor node (65, 69) includes a first application maintaining topology data indicating the topology of
the network and supporting a first protocol for updating the data with the first switching node (66, 70). In addition, the |
monitor node (65, 69) includes a second application maintaining a list of alarm conditions entered in the node event logs
in the network, and supporting a second protocol for updating the list with the plurality of distributed switching nodes. A
third application runs in the monitor node (65, 69) for maintaining a monitor database indicating the configuration of the
switching nodes as it is entered in the node configuration databases in the network.

p]

FOR THE PURPOSES OF INFORMATION ONLY

- Codesused toidentify States party to the PCT on the front pages of pamphlets publishing international appli-
cations under the PCT.

AT Austria FR France ML -Mali
‘AU Australia GA Gabon MR Mauritania’
BB Barbados GB United Kingdom MW Malawi
BE Belgium HU Hungary NL Netherlands
BG Bulgaria IT Italy NO Norway
BJ Benin JP Japan RO Romania
BR Brazil KP Democratic People’s Republic SD Sudan
. CF Central African Republic of Korea : SE Sweden
CG Congo ER Republic of Korea SN Sencgal
CH Switzerland LI Liechtenstein SU Soviet Union
CM Cameroon LK SrdLanka TD Chad
DE Gemnany, Federal Republic of LU Luxembourg TG Togo
DK Denmark MC Monaco US United States of America
FI Finland MG Madagascar .

*a

WO 89/07377

' PCT/US89/00352

COMMUNICATIONS NETWORK STATE AND TOPOLOGY MONITOR

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to apparatus for
monitoring the status of a communication network, and
more particularly, for presenting status information

concerning a network to an operator in graphical form.

-Description of Related Art

Large communication networks consist of many
switching nodes interconnected by communication links.
The switching nodes perform complex communications
tasks, such as call routing, link control and data
compression. Various switches within the network will
perform different sets of these communicétions tasks
depending on the manner in which the nodes have been
configured by the user. Further, the links
interconnecting the nodes are of a variety of types,
each having unique features, such as satellite or
terrestrial lines.

The switches and links are often geographically
separated by some distance. As switches are changed,
new features are added or switches are deleted, the
configuration of the network can change significantly
at locations quite remote from the operator. Further,
the distributed switching nodes suffer alarm
conditions, such as breakdown of functional modules or
failure of communication protocols in real time that
must be communicated to an operator of the system.
Likewise, links can be addéd, deleted and changed in
real time from geographically separate locations.

An operator performing network diagnostics or

trouble-shooting tasks, needs efficient access to

v 3

WO 89/07377

PCT/US89/00352

current status information concerning a network. In
particular, the topology of +the network, alarm
conditions and the configuration of the various nodes
and links in the network is critical information.

The task of gathering status information from a

large communication network in a timely manner and

presenting that information in a usable form to an
operator can be gquite complex. Preferably, this
monitoring task should interfere as little as possible
with the communications task going on in the network
and not overlocad the communications channels with
monitoring information being forwarded to a single
mdnitoring station in the network. Further, it is
préeferable that the monitoring apparatus be
implemented without large scale changes to
communications tasks running in the network in order
to support the monitoring function.

SUMMARY OF THE INVENTION

The present invention provides an apparatus for
gathering and displaying information concerning status
of a communications network without overloading the
communications channels in the network. Further, the
information is displayed to the operator in a novel
and useful form. Finally, the apparatus is
implemented with minimal impact on the design of the:
running communication tasks in the network.

The network in which the present invention
operates, in‘clud'es a plurality of distributed
switching nodes and a plurality of links connecting
the switching nodes. Each of the switching nodes
performs communications functions to serve calls and

data being transferred through the network. Further,

<

)

WO 89/07377

PCT/US89/00352

~each of the switching nodes maintains a node event log

including a node alarm table that 1lists alarm
conditions for the node, and méintains a node
configuration database, identifying a configuration of
tasks and hardware running on the node.

The monitoring apparatus according to the present
invention, comprises a monitor node, including an
operator input interface. The monitor node is coupled
to a first switching node in the plurality of
distributed switching nodes. The monitor node
includes a first application maintaining topology data
indicating the topology of the network and supporting
a first protocol for updating the data with the first
switching node. In addition, the monitor node
includes a second application maintaining a list of’
alarm conditions entered in the node event logs in the

network, and supporting a second protocol for updating

the list with the plurality of distributed switching
nodes. A third application runs in the monitor node °
for maintaining a monitor database indicating the
configuration of the switching nodes as it is entered
in the node configuration databases in the network.
This third application also supports a third protocol
for updating the monitor database with the plurality
of distributed switching nodes for updates to the hode
configuration database.

The monitor node further includes a display
application that is responsive to operator inputs
identifying a subject node or other object in the
network and is coupled to the monitor database, the
list of alarm conditions and the topology data. The
display application presents plural windows on a

display monitor, presenting configuration data about

Y

WO 8907377

PCT/US89/00352

the subject node, the network topology and the alarm
conditions to the operator.

On the first switching node to which the monitor
node is coupled, an application generates topology
data in response to 'the communications functions
performed on the node and sends in response to the
first protocol with the first application in the
monitor node, the topology data +to the first
application.

On each of the distributed switching nodes in the

- network, including the first switching node, an

application coupled to the node event log and
responsive to the second protocol with the second

. application, packages and sends data indicating alarm

conditions entered in the node event log to the second
application. In addition, on each of the plurality of
distributed switching nodes in the network including
the first switching node, an application coupled to
the node configuration database, and responsive to the
third protocol with the third application, packages
and sends data from the node configuration database to
the third application through the network.

Accordiﬁg to another aspect of the invention, the
monitor node includes a fourth application which
maintains a list'of event records entered in the node
event logs in the network and supports a fourth
protocol with the distributed switching nodes. On
each of the plurality of distributed switching nodes,
an application coupled to the node event log on the
node and responsive to the fourth protocol with the
fourth application, packages and sends data indicating

event reports entered in the node event log to the
fourth application.

htl

WO 89/07377

PCT/US89/00352

Additional features of the present invention can
be determined from a review of the following drawings,
detailed description and claims.

BRIEF DESCRIPTION OF THE FIGURES

Fig. 1 is a block diagram providing a system
overview according to the present invention.

Fig. 2 is a diagram of the multiple windows on
the display of the monitor node according to the
present invention.

Fig. 3 is a block diagram of the monitor node
according to the present invention.

Fig. 4 is a block diagram of a switching node
according to the present invention.

Fig. 5 is a block diagram illustrating a system
including a plurality of monitor nodes according to
the present invention.

Fig. 6 is a system overview for the event log
application, distributed between £he monitor node and

" the switching node.

Fig. 7 is a snapshot of the event log on the
switching nodes before and after a wrap.

- Fig. 8 illustrates the message buffer and
compression of data in the buffer that occurs on the
event application on the switching node.

Fig. 9 illustrates the message structure for the
open session message in the event'application.

Fig. 10 illustrates the confirm message structure
for the event application.

Fig. 11 illustrates the next packet message

.structure for the event application. -

Fig. 12 illustrates the close session message

structure for the event application. .

v

/]

WO 89/07377

PCT/US89/00352

Fig. 13 1illustrates the event packet message
structure for the event application.

Fig. 14 is a state transition diagram for the
event application running on the monitor node.

Pig. 15 is a state transition diagram for the
portion of the event application running on the
switching node.

Fig. 16 illustrates the format for storing event
records on the switching node and on the monitor node.

Fig. 17 is a data flow diagram for the alarm
table application on the monitor node and the
plﬁrality of switching nodes.

Fig. 18 illustrates the session initialization

- protocol between the alarm table application on the

monitor node and the corresponding application on the
distributed switching nodes. |

Fig. 19 illustrates the normal session protocoi
between the alarm table application on the monitor
node and the corresponding application on the
distributed switching nodes. .

Fig. 20 illustrates a reset protocol.between the
alarm tab_le application on the monitor node and the
cor:r;'esponding application on the switching node.

Fig. 21 'is a data flow diagram for the database
application.

Fig. 22 illustrates the data structures on the
monitor node for the database application.

Fig. 23 illustrates data structures on the
distributed switching nodes for the database
application.

Figs. 24 and 25 ijillustrate the message-exchange
protocol for normal operation between the DBA runriing

on the monitor node and the DBAPE running on the
switching nodes.

bl

WO 89/07377

PCT/US89/00352

Figs. 26 and 27 illustrate the message-exchange
protocol for lost messages between the DBA running -on
the monitor node and the DBAPE running on the
switching nodes. A

Figs. 28 and 29 illustrate the message-exchangé
protocol for messages out-of-sync between the DBA
running on the monitor node and the DBAPE running on
the switching nodes.

Fig. 30 illustrates the message-exchange protocol
for pathological failure between the DBA running on
the monitor node and the DBAPE running on the

switching nodes.
DESCRIPTION OF THE PREFERRED EMBODIMENTS

With = reference to the figures, a detailed
description of preferred embodiments of the present
invention is provided.

In particular, a system level description is
provided with reference to Figs. 1-5. Following the
system level description, the distributed applications
running in the preferred embodiment, pertinent to the

present invention, are described.

I. System Overview

Fig. 1 illustrates the communication system in

which the present invention operates. In particular,'

‘the communication system includes a plurality of

distributed switching nodes 1,2,3,4, such as
Integrated Digital Network Exchanges (IDNX) provided
by Network Equipment Technologies, Inc., 400 Penobscot
Drive, Redwood City, CA .94063. The switching nodes
are interconnected by links 5,6,7, among each other,

WO 89/07377

PCT/US89/00352

and across links 8,9,10 to other switching nodes in
the network.

The switching node 1 is connected to a monitor

node 11 across link 12. Coupled with the monitor node
11 is an operator interxrface 13 used for access to

configuration programs running in the switching nodes

in the network and which “communicates with the

switching node 1 across link 14. The monitor node
displays status information concerning the plurality
of d‘ist.fibuted switching nodes and 1links in the
network. The operator utilizing the information
displayed on node 11, operates the configuration
programs through the interface 13 to perform
diagnostic functions, trouble-shooting and
configuration tasks throughout the network.

IXI. Display Windows L

The monitor node 11 includes a display, such as a
monitor provided with a Sun Microsystems, Inc.
workstation, that includes a plurality of windows as
illustrated in Fig. 2. The first window 20 on the
display, graphically presents the topology of the
network to the operator. As illustrated in Fig. 2,
the network includes a plurality of distributed
switching nodes 21 which are geographically spread
across the continental United States. The window 20
displays a map of the U.S. with indicators of the
locations of the switching nodes and lines indicating
links between them. In addition, the window 20
includes highlighting features for particular nodes as
illustrated at 22 to indicate alarm conditions
occurring at the node. 1In the preferred embodiment,
nodes- are highlighted using color, and a legend 29 is

provided to ease interpretat;i.on_. The legend 29 also

]

w

WO 89/07377

PCT/US89/00352

includes information identifying symbols for
graphically depicting network components.

A second window 23 on the display illustrates a
configuration of a subject node, Node X. Through the
user interface, the operator can designate a subject
node using, for instance,v a mouse and cursor
technique, commonly used in windowing display systems.
The mouse could be used to move the cursor to a
éubject node on the network topology map in window 20.
By setting a Switch on the mouse, the selected node
configuration can be brought up and displayed in
window 23. Node configuration includes a graphic
display 25 illustrating functional elements CRD1l, CRD2
. . . of the node. In addition, the textual
information 26 concerning cards and 1links in the
network, can be listed using a mouse and windowing
algorithm. . PP

A third window 27 on the display, presents a list
of alarm conditions occurring throughout the network.

A fourth window 28 on the display is used as an
interactive user interface window, such as may serve
the operator interface 13 +to switch configuration
tools, switch diagnostics, and the like. This area on
the screen is also used for configuration programs for
the monitor node.

A fifth window 29 on the display, provides a menu
service for the operator based on icons.

An additional text window 30, displays monitor

system messages, such as the status of various monitor

applications.
This display format provides information
concerning status and alarm conditions in the network

in a usable form.

WO 89/07377

PCT/US89/00352

-10-

III. Monitor Node Overview

Fig. 3 is a block diagram of applications running
on fhe monitor néde according to +the present
invention. As mentioned above, the monitor node
includes a display processor 33 which supports the
display described with reference to Fig. 2.
Information is supplied to the display processor 33
from an alarm table application 34, a topology data
application 35 and a database application 36. The
monitor node includes, in addition, an event 1log

application 37, which maintains a log of event records
from distributed switching nodes in the network. This

is wused for report generation rather than being
directly used by the display processor 33.

The monitor node also includes a user input
interface device or devices 38, such as av keyboard and
mouse as described above, in order to identify a
subject node for display in the node configuration
window 23 of the display processor 33.

The monitor node is connected across a HDLC link
39 to a switching node in the network. Accordingly, a

HDLC port server application 40 is included through
“which messages: from the alarm table application,

topology data application, database application and

‘event log application are sent to the distributed

switching nodes. Further, data is received through
the HDLC port 40 from the distributed switching node
in response to the requests.

The event 1log application 37, alarm table

application 34, topology data application 35 and

database application 36, are distributed tasks with
part of each task running on the monitor node and the

remainder of the task running on the switching nodes

1]

o

.

WO 89/07377

PCT/US89/00352

-11-

of the network. The details of these tasks are

provided below.

IV. Switching Node Overview

Fig. 4 illustrates tasks running on a switching
node which is coupled to a monitor node in the
network. Accordingly this switching node includes a
HDLC port 45 coupled to the HDLC link 39 for receiving
communications and supplying messages to the monitor

-node. In addition, the switching node as illustrated

in Pig. 4, performs communications functions as
illustrated schematically at 46 for managing
communications through the network 47. An event log
48 is maintained by the switching node in response to
the communications task 46. In addition, a
configuration database 49 is maintained on the
switching node which indicates the configuration of
the local node. Finally, a topology application 50
runs on the switching node in order to maintain a
database indicating the topology of the network which -
is used by the communications task 46 in call routing
and similar operations. _ ‘ '

In addition, an alarm table interface 51, an
event log interface 52 and a database interface 53 run
on the switching node illustrated in Fig. 4. Each of
these interfaces 51,52,53 called attached processor
executors APE, are adapted to pre-process and package
information from the event log 48 or configuration
database 49 and forward that information to the
monitor node in response to requests from the monitor
node. In addition, each of these interfaces 51,52,53
serves a single monitor node. In the embodiment shown
in Fig. 4, thesé interfaces serve monitor No. 1. If a

second monitor is added to the network, a second alarm

WO 89/07377

PCT/US89/00352

-12-

table interface for the second monitor, a second event

log .interface for the second monitor and a second.

database interface for the second monitor, are
required.

The topology application 50 responds directly to
requests it receives from a monitor node attached to
that switching node, to supply topology data. Since
this information is maintained for the entire‘network,
the node to which the monitor node is coupled across
the HDLC 1link 39 is the only node that must send

topology data to the monitor node.

The event log in +the preferred embodiment
maintains event records for the node and an alarm
table. The interface for the alarm table is separated
from the interface for the event log in order to
ensure integrity of the alarms as discussed in more
detail below. ‘

Fig. 5. is a schematic diagram of a network
including two monitors. Because the monitor - tasks
according to the present invention, interfere very
little with communications tasks in the network, the
present invention allows a plurality of monitors to be
coupled to a single network. Accordingly, a first
monitor MON1 65 is coupled to a first switching node
66 in the network. Switching node 66 is coupled to
switching node 67 and 68 and through nodes 67 and 68
to other _switching nodes in the network. A second
monitor MON2 69, is coupled to switching node 70.

Switching node 70 is coupled to switching node 71 and-

to other nodes in the network. As mentioned above,
each of the nodes in the network served by the
respective monitors, MON1 and MON2, will have an alarm
table interface 51 for each monitor, an event 1log

interface 'for each monitor and a database interface

7}

WO 89/07377

PCT/US89/00352

-13-

for each monitor. Switching node 66 will send
topology data to the monitor MON1 and switching node
70 will send topology data to the monitor MON2.

v. Monitor System Operation
In the preferred embodiment, a display process
server 33 and a user input interface 38 of the monitor

system, manage the display of current network state
and topology, provides a menu service and provides a
configuration module for use by the operator. The
current state of the network is determined through
notifications from the alarm table application 34 of
alarms occurring in the distributed switching nodes,
from the network topology application 35 of nodes
going up and down in the network, and from the
database application 36 of changes to switching node
configurations. Jn. addition, the configuration module
supplies information to the display processor 33,
indicating when nodes are added or deleted from the
network, and for modification of the windows
displayed.

In large networks in which all nodes are
configured to the maximum, the data space requirement
for the monitor node will be immense. To maintain a
reasonable virtual size, the display processor 33
constructs card configuration information at the card
level and below only when images are required as
indicated by an operator.

The monitor node includes an wunderlying data
management system based on the commercially available
database known as ORACLE. Each application on the
monitor that uses the ORACLE needs read, -insert and
update functions on widely disparate tables, rows and

columns. The interface to the database management

14

WO 89/07377

PCT/US89/00352

—14-

system on the monitor is a function call that is
responsive to SQL statements issued by the
applications. The database contains all the node
configuration data from the database application 36,
event records from the event log application 37 along
with text descriptions. A standard SQL window is
provided to the operator of the monitor node through
which the user may make arbitrary queries of the
database.

A watchdog task periodically counts the number of
events listed in the database and initiates a session
with the user, requiring -him to archive and purge
events and errors to free space in the storage system.

The interface between the monitor .node and the
switéhing node allows for sending of messages between
the monitor node and tasks in the switching nodes. As
mentioned above, tﬁe interface is an HDLC link with
tasks running on the monitor node and its attached
switching node, for managing the interface.

On the monitor side of the liﬁk, messages from
the applications running on the monitor are written
over the HDLC link. Also, packets received from the
link are distributed to appropriate applications on
the monitor node. On the switching node side of the
link -39, a task receives incoming messages from the
network and from the monitor. This task acts as a
"ghostwriter" for all monitor applications. Incoming
packets contain full network ‘messages. The
distributed tasks serving the monitor system simply
insert an identifier of the node on which they are

running in.a‘message which is transparently sent to

the network. A task on the switching node to which
the monitor node is attached then forwards the message

from the monitor node with the header intact.

3

WO 89/07377

PCT/US89/00352

-15-

The monitor node includes kernel and system
initialization applications which are not shown in the
block diagram. The kernel provides intertask
communication, memory management, debugging and
tracing, and task management functions to the
plurality of applications running on the node. The
kernel uses a UNIX IPC user-datagram protocbl (UDP) as
its underlying transport mechanism. The kernel
determines that messages from applications running on
the monitor should be supplied across the HDLC links
to the coupled switchihg node into the network.

The monitor system event application retrieves
events from all the nodes in the network. The
application consists of two parts: the event log
application running on the monitor, and the event log
interface running on the distributed switching nodes.

The monitor node receives event information from the

switching nodes through the network and 1logs the

information to the ORACLE database. The event log
interface running on the switching nodes retrieves
event information £from an event log manager on the
switching nodes and sends the information on to the
monitor node. '

petailed specifications of these tasks are
provided below. »

The alarm table application consists of an
application running on the monitor node and an
interface application running on the switching node.
This application retrieves alarm tables £from the
distributed switching nodes in the network as they
changed so that the display system and subsequently
other applications running on the monitor can keep
track of the changing statu.s 0of the network. The
alarm table application (ATA), is the single source of

WO 89/07377

PCT/US89/00352

-16-

alarm information to the monitor node. Even though
this information is obtainable from the event string,
it 'is not extracted in this manner. In addition, the
alarm table application manages information supplied
to the window which contains a display of the active
alarms in the network sorted by criticality, time and
node. ‘

The network topology application (NTA) is the

single source of information for the rest of the

‘monitor node applications for information about the

current state of the network topology as known on the
monitor node. It retrieves the network topology map
from a network managing task running on the node to
which the monitor node is attached. This information
is retrieved on a regular polled basis.

The database application (DBA) retrieves
configuration databases from the switching nodes
distributed throughout the network and stores them in

a monitor node format on the database system of the

monitor node. The configuration databases are
ubloaded whenever the monitor node detects that a
database on a switching node has changed and the
monitor node cannot determine which part of the
database has changed. ‘This application is distributed

" between the monitor node and the plurality of

SWitching nodes. The two pérts of the application
communicate with a protocol that gives reliable
in-order delivery of the database blocks. In
addition, when +the 'databases are updated at a
switching node, the changes are sent to the monitor
node.

A graphical configuration tool allows for
definition and placement of nodes, networks and views

for the display processor. The basic network object

w

L]

WO 89/07377

PCT/US89/00352

-17~

is a node. Before the display of information about a
node ié constructed, the user must enter the node in
the ORACLE database of the monitor node. Once this
node is placed in the database, it is available to the
display processor.

A graphical configurator application running in
the display system is used by an operator to group
nodes and sub-networks for display purposes, if
necessary. The networks and nodes are placed in
views. Within a view, the user can place the nodes in
any location which allows for creating a view which is
readily decipherable. '

The switching node sides of the respective
monitor node applications share several architectural
characteristics. The first is that they all wuse
protocol that ensures an in-order, reliable exchange
of data with the monitor node. This protocol for all
applications is a positive acknowledgment protocol
with a window size of 1. This makes the protocol a
simple command-response sequence, providing control
for the amount of traffic in the network at a given
time serving the monitor node. Of greatest concern is
the number of messages arriving at the switching node
to which the monitor node is attached. This protacol
prevents .a flood of monitor information from
overloading that node. ' ‘

A second architectural characteristic of the
applications on the switching node side, is that each
application runs on the same central processing unit
in the sﬁitching node as the task serving the
communications functions of the node to which that
interface talks. This simplifies the desigﬁ’of the

interface and ensures that messages cannot be lost

WO 89/07377

PCT/US89/00352

-18-

bétween the interface and the task to which it talks
and'reduces traffic on intra-model buses.

Thirdly, the CPU on which the interface runs is a
co-processor rather than a master processor'.of the
node, if possible. This optimizes the amount of

- memory for data that the interface can use as well as

minimizes the impact of the monitoring tasks on call
processing tasks in the node.

A fourth architectural characteristic of the

monitor applications requires that each interface
serves a single monitor application and talks to a
single monitor task. This siﬁplifies the design
implementation of the interfaces.A As mentioned above,
if two monitor nodes ménage the same switching node,
each monitor node will have its own set of interfaces
on the switching node.

The detailed implementation of the network

topology application (NTA), the database application .
(DBA), the alarm table application (ATA) and the event

application. (EVA) are provided below.

vI. Event'Appliéation Design

1. Introduction

The event application 1is a distributed
applicétion responsible for collecting the events
occurring on the switching nodes in the network
illustrated in Fig. 6. It consists of two halves, one
(EVA) on the monitor side and the other (EVAPE) on the
side of the node network. The monitor part receives
the events from the network part and distributes them
through the monitor system as necessary. -

The monitor side of the event application

consists of the event application task EVA 104. The .

]

WO 89/07377

PCT/US89/60352

-19-

EVA communicates with the network topology application
NTA 105 and the monitor database system DBS 106.

On the network side of the event application an
event APE task EVAPE 102 is running on each node and
is talking to the local event log manager ELM 103.

The EVA 104 on the monitor maintains a session
with each EVAPE 102 out in the network to . ensure

‘reliable delivery of events. This session concept

also allows the EVA 104 to flowcontrol the EVAPEs and
thus prevents the monitor node from being flooded with
messages from the network.

Furthermore the EVAPEs are able to increase
transmission efficiency, decrease network traffic and
make efficient use of local buffer space by packaging
event messages arriving from the ELM 103 before

- transferring them to the EVA 104.

2. General System Overview

Fig. 6 gives a general overview of the system to
be implemented. It shows the logical modules and the
message passiné.between them. The transfer service
101 provides the transparent message paésing between
tasks - here the EVA 104 and EVAPE 102. They are not
aware of the transfer service 101.

3. The EVAPE
3.1 Required ELM Feature

The design of the event application relies on one
functional feature of the ELM 103. It must have the

"added function of detecting when a wrap occurs and

communicate this wrap to its client task, which is the
EVAPE 102. :
As depicted in Fig. 7, a wrap 1s here

semantically understood as a gap in the chronological

WO 89/07377

PCT/US89/00352

-20-

sequence of n events out of the event log and
presuming it has successfully retrieved event 1 out of
n, the ELM 103 might overwrite events 1 and 2, while

the EVAPE 102 is waiting for CPU cycles to read events
"1 and 2. ‘Thus the next event the EVAPE 102 will get

from the ELM 103 once it is running again, is not the
event 2 it actually wants, but is an event which is no
longer in sequence with event 1 already read. A wrap
has occurred. :

The ELM 103 must inform the EVAPE 102 of this
wrap, which consists of a loss of an unknown number of
events; in the flag field of the event log message.
The EVAPE 102 itself cannot detect such a wrap.

No other actions except marking the . monitor
database are taken when a wrap occurs. The 1lost
events due to a wrap are not retrievable.

. 3.2 EVAPE Packaging Scheme

An EVAPE 102 task communicates with the local EIM
103 on every switching node in the network.
It gets a request to read out of the event log

. from the peer event application task EVA 104 on the
_monitor. The EVAPE 102 will then reply with a certain
. number of events contained in an event packet.

The protocol between the EVA 104 and the EVAPE

102 is discussed in greater detail in section 3.2.

The EVAPE communicates with the ELM in the
so-called deferred mode; . i.e., events are not
asynchronously sent to the EVAPE 102 by the ELM 103.
The EVAPE 102 rather requests a single event at a time
until a certain number of events is reached which
nlcely fit into one packet from the communications
tasks of maximum size (900 bytes), or until some other

condition occurs (see section 3.2).

£]

WO 89/07377

PCT/US89/00352

-21-

This number is determined to be 28 physical event
records (28*32 bytes = 896 bytes), which translates to

.a dynamically adjustable number of logical events,
. depending on the size of each event (1 - 3 physical

. records) .

Sending such a bundle of events rather than every
event as it is retrieved from the 1log, increases
throughput without, however, flooding the monitor node

and makes best use of internal buffers, as node memory

'is allocated in 512 byte chunks minimum.

As indicated above, when receiving an event log
message (EvenfLongg) from the ELM, the EVAPE unpacks
it; i.e., it basically retrieves the event information
(82 bytes), and provided the event tokens are not all
used, stores it in a more compact form in the buffer
it uses to assemble the message to be sent to the EVA
104 as a response to an earlier request. A “fullyb
loadedﬁ-event cannot be compressed and is stored as it
comes in EventLogMsg.

The way the EVAPE compresses events is shown in

. the following Fig. 8.

Fig. 8 shows an event log message holding an
event with 2 +tokens. Thus only 2 tokens will be

-stored in the EVAPE 102 message buffer, saving the
.space of 6 further tokens (6*6 bytes = 36 bytes) which

are not used by this event.[Expand - this is not

c¢lear]

3.3 EVAPE Buffering Scheme
When the EVAPE has assembled its .event packet and

there has been a request from the EVA, it sends it to

the EVA on the monitor. During the time- which the
EVAPE has to wait until it gets the next permission to

send from the EVA (here called round trip delay), it

.

WO 89/07377

PCT/US89/00352 .

~22~

starts buffering ahead to generate the next packet.
In this way, events can be collected a little faster
and the EVAPE is likely to miss fewer events.

There is of course a limit of what the EVAPE 102
can buffer ahead. It will try only to assemble the

next packet, because of node memory allocation

constraints and because in the average case there are

probably not so many events.

The buffer space needed here to assemble the next
event packet during round trip delay is 1 KByte. The
memory permanently allocated to the EVAPE is 2 KBytes,
as The EVAPE must store the packet just sent, but not
yet acknowledged (see 4.2.2).

3.4 EVAPE - ELM Protocol Basics
The EVAPE starts a session with the ELM and EVA

receiving an open session message (OpenSessionMsg)

from the EVA on the monitor. After the EVA-EVAPE

session has been established, the EVAPE starts its
communication with the ELM by sending the filter
request messages (MsgFilterRequest) which it ‘has
received from the EVA to the ELM (see section 4.2.1
for the EVA-EVAPE open session).

The MsgFilterRequests indicate deferred mode,
telling the ELM to send a single event at a time until
it is polled again.

The ELM returns the first matching event as a
response to the last MsgFilterRequest in an Event Log
Message (EventLogMsg), if the MsgFilterReguests have
all been received in sequence and if there has been
énough memory available to ELM to build a filter
cbmmgnd block FCB. If there is no matching event, a
no event message (NoEventMsg) is returned. If the
MsgFilterRequests are out of sequence, or the ELM is

U]

WO 89/07377

PCT/US89/00352

-23~

out. of memory for FCBs, a can't service message
{CantServMsg) is returned.

In order to ensure in sequence delivery of
MsgFilter Requests, the EVAPE will buffer them as it
receives them from the EVA and brings them in order if.
necessary. This can be done, because the EVAPE knows
how many MsgFilterRequests to expect through a
parameter in the OpenSessionMsg (see Fig. 9).

The EVAPE reéuests further events from the ELM
through next event messages (MsgNextEvent) returning
one event each.

When no event has been logged since the 1last
poll, the ELM will return a no event message (NoEvent
Msqg).

The events returned by the ELM will all be in
sequence unless the event log has wrapped between two
MsgNextEvent, in which case the ELM will give a
notification in the flag field of the EventLogMsg.

The EVAPE must keep a timer for its relation with
the ELM. It must time out when the EVAPE does not
receive a response to a message from the ELM. This is
an indication that the ELM is possibly no longer
alive. The EVAPE retries up to two times to send its
message, until it either receives a response or
informs the EVA of the situation (ELM crash flag in
the flag field of the event packet message). _

The death of the ELM is pbtentially coupled with
a loss of events, because although they might occur,
tﬁey cannot be logged. - Apparently the event 1log
buffer is not cleared.

When the ELM 1is resurrected, the EVAPE must
establish a new session with it, because the ELM, of
course, does not recall anything {(no FCB.). The EVAPE

receives its session parameters (MsgFilterRequests) as

WO 89/07377

PCT/US89/00352

-24-

a response from the EVA to the EVAPE's notification,
because a new EVAPE-ELM session implies a
reinitialization of the EVA-EVAPE session.

The time out used by the EVAPE to detect a failed

EILM is to be chosen smaller than the timeout used in

the EVA-EVAPE protocol.

4. The EVA :
4.1 EVA Generals
The monitor event application task (EVA) runs on

the monitor and maintains a session with each EVAPE in
the node network.

The EVA collects the events from each node as the
EVAPEs send them. It records all events in the
mohitor database DBS. Basically the event type and
subtype must be translated into meaningful information
foi"query and report generating purposes. The EVA
only-stores the event records in their raw form in the
DBS. Event semantics will be provided by a separate
application (see section 7 on the EVA-DB interface).

The EVA will have to interface with the monitor
network topology application NTA 105, as this

application knows when there is a new node coming into

‘the network -or whether one has disappeared. The NTA

105 notifies the EVA of either situation.
When a node comes into the partition managed by
the monitor (after either a reset or in the case of a

‘new node), the. NTA 105 sends a node-up messége

(NodeUpMsqg) -to the EVA. Analogously, the EVA .receives
a node-down message (NodeDownMsg) when a node crashes
and a node deleted message (NbdeDeletedMsg) when ‘a
node is taken out of the partition.

In the first case the EVA. must open a session

with the EVAPE running on the new node. Prior to this

[{]

w

[

WO 89/07377

PCT/US89/00352

-25-

the EVA must remotely create the EVAPE task by sending
a create message to that node. In the two latter
cases it can stop polling the EVAPE, because the node

is no longer reachable or of any interest.

4.2 EVA-EVAPE Protocol
The EVA maintains a session with each EVAPE on

the nodes in the network. Each session is initialized

through an open session message (OpenSesSion Msg) by
the EVA. The EVAPEs will not be able to initiate a
session.

The EVA will supply the filter request messages
that the EVAPE needs to start its communication with
the ELM. This allows for the flexibility to have the
monitor side control which events it wants to store

from which node (hardcoded).

4.2.1 Opening Sessions
The EVA will open all sessions with a sequence of

open session messages and wait for response packets:
from all EVAPEs. This could cause, in a 32-node
network, 32 event packets to arrive at the monitor
node almost simultaneously, if +the 1links permit.
However, the EVA will accept only one packet at a
time. _

The OpenSessionMsg has as parameters the number

of filter request messages (MsgFilterRequest)

following (FilterCount) and, as an unused field, the
number of event packets the EVAPE is permitted to send
upon a -request from the EVA (PktGrant). This number
is one. See Fig. 9 for the structure of an
OpenSessionMsg.

Responses from EVAPE of event packet per

OpenSessionMsg (PktGrant = 1), provides inherently for

WO 89/07377

PCT/US89/00352

~26~

in-order delivery and is therefore easily implemented.
Two or more outstanding packets would require a window
mechanism but would offer the flexibility of granting

'a larger window size to remote nodes to enhance

performance. " This might be desirable in alternative
embodiments.

After having received an OpenSessionMsg, the
EVAPE will confirm by sending a confirm message
(ConfirmMsg). The structure of the ConfirmMsg is

depicted in Fig. 10. It has a field (PktSegNbr) which.
holds the sequence number of the last event packet

sent (for consistency checking). As a response to an
OpenSessionMsg, PktSegNbr in the ConfirmMsg will be
Zero.

When the EVA does not receive a ConfirmMsg from
the EVAPE it does- not try to send the
MsgFilterRequests. Rather, it times out and re-sends
the OpenSessionMsg according to the usual
retransmission and timeout scheme described below.
When it does get a ConfirmMsg, it subsequently sends
the number of MngilterRequests specified in the
OpenSessionMsg.

This also covers the case of lost
MsgFilterRequests. If the EVAPE does not respond, the
EVA will time out and recover from there.

The EVAPE confirms the receipt of all
MsgFilterRequests by sending another ConfirmMsg
(PktSeqNbr 0). When the EVA does not receive one, it
again acts according to the overall retransmission

scheme.

The open session phase is completed when the EVA

feceiyes this ConfirmMsg. It will immediately enter

the packet transfer phase by requesting the first
packet through a next packet message (NxtPktMsqg).

[{]

»

[

WO 89/07377

PCT/US89/00352

-27-

4.2.2 Transferring Event Packets
The EVA requests ‘a packet from the EVAPE through

a next packet message (NxtPktMsg) illustrated in Fig.
11.

The NxtPktMsg has a parameter packet sequence
number (PktSegNbr) which holds the sequence number of
the expected packet. The PktSegNbr is manipulated as
follows:

- If PktSeqNbr is the sequence number -of the
next packet expected, the next packet in sequence is
requested and the previously received packet with
PktSegNbr-l1 is acknowledged. ’

- If PktSeqNbr is the sequence number of the
last packet received, the retransmission of the 1last
packet sent is ordered. '

while the EVAPE is waiting for the NxtPktMsg
from the EVA, it keeps polling the ELM for events and
assembles the next packet, as described in chapter
2.2. When the NxtPktMsg arrives, the EVAPE can send

‘this packet immediately as a response, provided the

PktSeqNbr matches that of this packet.
~ If the NxtPktMsg is a retransmit message, the
EVAPE sends again the last sent packet, which is

étored for that very purpose until it has been

acknowledged.,

. Thus the EVAPE permanently keeps two event
packefs, the last sent and the next to send. This
uses 2 KBytes of buffer space. -

The format of the event packet message (EVPktMsg)
as it is sent from the EVAPE to the EVA is shown in
Fig. 13. '

The . EVA must keep a timer in its relationship
with the EVAPE to detect lost event packets on the

WO 89/07377

PCT/US89/00352

-28-

links (PktTime). The problem is how to determine the
value of this +timer, which 'is different for each
EVA-EVAPE session and depends on the netwofk topology
and routing tables. As packets are rarely lost,
however, PktTime can be chosen generously large so
that the same value can be used for all sessions
independently of the path length.

In a 32-node network a PktTime of one minute
should be large enough to handle the longest path case
without causing too long delays in the average path
case.

4.2.3 Retranémission Scheme

When the EVA does not receive a response to a
NxtPktMsg from the EVAPE during PktTime, it will

retransmit the NxtPktMsg without incrementing the

PktSegNbr, up to twice (total of three tries).

When at that point it still has not received an
EVPktMsg, the EVA has to assume that either the EVAPE

has just crashed, the node has reset, or that the HDLC
link connecting the monitor to the network has gone
away. 'Anyway, the EVA has lost connectivity with the
EVAPE for some reason. The recovery mechanism is the
same in either case.

The EVA closes its session with the EVAPE. It
then checks if it received a NodewanMsg or
NodebeletedMsg from the NTA 105. If.yes, it will not
open a new session with the EVAPE until it gets a
NodeUpMsg from the NTA 105 for that node. If no, it
immediately tries to re-open the session just closed
by sending an OpenSessionMsgqg.

The presented scheme is not only wvalid in the

case of no response to a NxtPktMsg. Whenever the EVA

]

h

9

WO 89/07377

PCT/US89/00352

-29-

timesout because of a no response to any message, the
same recovery mechanlsm applies.

The EVA has to mark the DBS when it loses
connectivity to an EVAPE, because potentially events
have been lost. _

If the EVA crashes itself, it will reinitialize
all sessions with the EVAPEs as when it comes up for
the first time. The DBS must be marked accordingly.

4.2.4 Closing Sessions
In the previous section, it was mentioned that

the EVA will close its sessions with an EVAPE when it
is no longer reachable, i.e., when PktTime expires
three times in sequence or when the EVA receives a
NodeDownMsg or NodeDeletedMsg from the NTA 105.

The EVA also closes a session when it receives an
EvPktMsg with the .ELM crash flag set, indicating that

‘the EVAPE gets no more response from the ELM. The

EVAPE has gone through its own recovery scheme prior
to sending this message.

The closing of a session only involves a message
to be sent when a node has been deleted Off the
partition of the network controlled by the monitor and
the EVA still has connectivity with the EVAPE. 1In
this case, the EVA sends a close session message
(CloseSessionMsg) to the EVAPE for housecleaning
purposes. The CloseSessionMsg‘has as a parameter the
sequence number of the last EvPktMsg received (see
Fig. 12 beiow).

5. EVAPE Finite State Model
The following Fig. 15 shows the EVAPE state
diagram. The EVAPE finite state space has three

states, "close" 1501, being the initial state. The

" WO 89/07377

PCT/US89/60352

-30-

state diagram shows the input messages that determine

a transition condition. For legibility reasons it is.

not mentioned where the messages "enter"™ or "leave"
the state machine (i.e., message queues). Also,
additional transition conditions and actions are not
included in the figufe.

1. When the EVAPE is started it is in its

initial state “close"™ 1501 and waits for an

. OpenSessionMsg from the EVA. The EVAPE confirms the

receipt by sending a ConfirmMsg to the EVA and
switches to the "open" state 1502.

2. In the "open" state, the EVAPE expects a
number of MsgFilterRequests from the EVA. This number
has been specified as a parameter in the foregoing
OpenSessionMsg. The EVAPE stores all incoming
MsgFilterRequests which may arrive in disorder. It
brings them in sequence before forwarding them to the
ELM. When a MsgFilterRequest is lost on the way from
the EVA, the EVAPE waits for it to arrive. It does

‘not forward the MsgFilterRequests to the ELM until it

gets all of them (see section 6 on EVA protocol
machine). The EVA stays in the "open" state 1502.

3. After having forwarded all the
MsgFilterRequests to the ELM, the EVAPE will get back
a response. If this happens to be a CantServMsg, the
ELM most probably cannot momentarily find memory to

allocate a filter coinma_nd block FCB. Therefore the -

EVAPE tries up +to twice more to send the

" MsgFilterRequests. ‘Its state remains "open" 1502

until the third CantServMsg (see 5).

4, If the EVAPE receives an OpenSessionMsg in
the “"open" state 1502, it confirms by .sending a
ConfirmMsg to the EVA. It stays in the "open;' state
1502.-

]

“

»

(]

@

WO 89/07377

PCT/US89/00352

-31-

N.B.: The OpenSessionMsg most probably has been
originated by a different EVA.

5. When the EVAPE gets the third -CantServMsg,
it gives up and sends a RejectMsg to the EVA. it
changes its state to "close"” 1501.

6. Like in (3) the EVAPE has been waiting for a
response from the ELM after having forwarded all
MsgFilterRequests. This time the ELM responded with
either an EventLogMsg or a NoEventMsqg. In any case
the EVAPE confirms and completes the open phase by
sending a ConfirmMsg to the EVA. At the same time it
requests a further event from the ELM by sending it a
MsgNextEvent. The EVAPE switches to the "next" state
i503. '

7. If in the "next" state 1503, the EVAPE
receives an EventLogMsg or a NoEventMsg from the ELM,
it.Kéeps polling the ELM through a MsgNextEvent. Only
when its buffers are full does it stop polling. The
EVAPE resumes polling as soon as it has a free buffer.
This happens when it receives a NxtPktMsg from the EVA
acknowledging the EVAPE's previously sent EVPktMsg.
The EVAPE keeps its current state.

8. When the EVAPE gets a NxtPktMsg from the EVA
in the "next" state 1503, it responds with an EvPktMsg
having the PktSegNbr expected by the EVA and indicated
in the NxtPktMsg. This can be a retransmission or a
new EvPktMsg.

If the expected PktSeqNbr in the NxtPktMsg is the
same as the PktSegNbr in the last sent EvPktMsg, the
EVAPE retransmits this last packet. It does not

increment its current internal PktSeqCount (initially

“one). .

If the expected PktSegNbr matches the EVAPE's
next PktSeqgNbr to be sent {current PktSeqCount}, the

WO 89/07377

PCT/US89/00352

-32-

EVAPE sends an EvPktMsg having this PktSeqNbr. It

increments its PktSeqCount (modulo 2) and frees the
buffer containing the last sent and now acknowledged
EvPkitMsg. Thus it has memory to assemble the next
EvPktMsg. ; :

If the EVAPE does not have any events when it
géts a NfoktMsg, it does not respond. Only after
having received the third NxtPktMsg asking for the
same PktSegNbr, will it send an EkatMSg with zero
events and having the required PktSeqNbr. This scheme
requires the least messages to be exchanged between
the EVAPE and the EVA when there are no events to
report. The EVAPE has to respond the third time,
because the EVA resets its session after three tries
(assuming the EVAPE is not reachable).

9. When the EVAPE is in the "next™ state and
receives an OpenSessionMsg, it responds by sending a
ConfirmMsg and changes its state to "open." The
OpenSessionMsg.has most probably been originated by a
different EVA on another'.monitor thah the one the
EVAPE was talking to until now. This can occur when
the monitor is unplugged without shutting the system
down cleanly. When another monitor (or even the same)
is hooked up again to the network, the EVAPE will
still be funning unless this node has been taken down.

. Therefore it has to accept an OpenSessionMsg in the

"next"” state 1503.

. 10. The EVAPE might get a CloseSessionMsg in the
"open” 1502 or "next" states 1503, which leads to a
state change to "close"™ 1501. The node where the
EVAPE runs has been deleted out of the network

partition managed by the monitor. Therefore the EVA
closes its session with the EVAPE.

L

‘n

[

WO 89/07377

PCT/US89/00352

-33-

N.B.: This tells the EVAPE no longer to poll the
ELM and to free its buffers. Thus it does not use any
CPU or RAM while its node is no longer managed by the
moﬁitor. The same result is achieved by letting the

EVAPE have a long timer. When this timer expires and

the EVAPE has not heard from the EVA so far, it will
close the session, assuming that its node has been
removed from the partition. The EVAPE does the same
clean-up as mentioned before.

11. When the EVAPE does not get a response from
the ELM to a MsgNextEvent, it will retry up to two
more times. If it still does not get anything back,
it assumes that the ELM is no longer reachable (i.e.,
has crashed). The EVAPE then notifies the EVA by
responding to the Nxthstg by an EvPktMsg with the
EILm crash flag set.

12. If the EVAPE receives a CantServMsg from the
ELM in the "next" state, this means that the ELM lost
the FCB (probably after a crash). Therefore the EVAPE
stops polling the ELM through MsgNextEvents and

'résponds with an EvPktMsg that has the ELM crash flag

set to the NxtPktMsg. It changes its state to "close"
1501.

13. The EVAPE has jﬁst reset and 1is in its
initial "close" state 1501. When it gets a NxtPktMsg,
the EVA has not yet noticed the reset. So the EVAPE
sends a RejectMsg to tell it. ‘

N.B.: The EVAPE altefnatively could just ignore
the NxtPktMsg while in "close” 1501. After a third
NxtPktMsg without a response, the EVA would reopen the
session anyway. But the RejectMsg makes this happen
sooner.

The following messages can be ignored in the

following states (i.e., the EVAPE takes no action anc-

WO 89/07377

PCT/US89/60352

~-34-

drops them) and are therefore missing in the state
diagram in the respective places.

a) in “"close" 1501

- Evénttongg from ELM (only possible after
EVAPE crash}

- NoEventMsg from ELM (only possible after EVAPE
crash) - '

- CantServMsg from ELM (possible after ELM

crash)

- MsgFilterRequest from EVA (can only come from
different EVA/MONITOR

b) in "open” 1502

- NxtPktMsg from EVA (can only come from
different EVA/MONITOR)

c) in "next" 1503 .

-~ MsgFilterRequest (can only come from different
EVA/MONITOR) . . ’

6. EVA Finite Sfate.Model

Fig. 14 shows the EVA protocol state machine. -

Actually. the EVA is a multiple finite state machine,
allowing one automaton for every node managed by the
monitor, as it has to keep a session with every EVAPE
on those nodes. In the figure only one of those state

machines is shown, representing a specific EVA-EVAPE

- session. ‘The finite state space has three states,

"close" being the initial state. The input messages

come either from the EVAPE or the NTA 105. The output
messages are all sent to the EVAPE as actions to the
respective transitions.

1. A particular session is in its initial

"close" state 1401. The EVA receives a NodeUpMsg from

the NTA 105 telling it that the node this session

relates to has come up. It allocates a session

o

WO 89/07377

PCT/US89/00352

~36-

MsgFilterRequests, it switches to the "close" state .

1401 for that session.

7. If the EVA does not receive a ConfirmMsg
before its timeout PktTime expires, it changes this
session's state to "close" 1401 and recovers from
there.

8. When the EVA eventually receives a
ConfirmMsg from the EVAPE as a response to all

- MsgFilterRequests arrived and filter ok, it sends the

first NxtPktMsg to the EVAPE requesting an EVPktMsg
with expected PktSegNbrl. At the same time, the EVA
sets its timer PktTime. This opens the packet
transfer phase. The EVA puts the session into the

"next" state 1403.

9. Whenever the EVA receives an EvPktMsg with
the expected PktSegNbr in the “next" state 1403, it
increments its internal PktSegCount (modulo 2) and

asks the EVAPE for a subsequent EvPktMsg by sending ,

another NxtPktMsg with PktSeqNbr equal to PktSeqCount.
The EVA resets its timer PktTime and stays in the
"next" state 1403.

- 10. When the EVA times out while waiting for an
EvPktMsg, it asks for a retransmission of the same,
assuming that the packet has been lost. It resets the
timer and keeps the current state. It does not

- increment its PktSeqCount (also see (14)).

4 It might be possible for the EVA timer to expire
when the EvPktMsg has not been lost, but is terribly

late. In such cases the aforementioned retransmission

has generated a duplicate. Therefore the EVA discards

an EvPktMsg with a PktSegNbr it has already received.
11. The EVA receives a NodeDownMsg (for the node

the EVAPE runs on) -from the NTA in the "open" 1402 or

W

2]

7]

WO 89/07377

PCT/US89/00352

-37-

"next" state 1403. It closes the session by making
its current state "close” 1401.

12. The EVA gets a NodeDeleted (for the node the
EVAPE runs on) from the NTA 105 when a node is taken
out of the network managed by the monitor. The EVA
therefore makes some housecleaning by sending a
CloseSessionMsg to the EVAPE. It changes its state to
"close" 1401.

13. If the EVA receives an EvPktMsg with the ELM
crash flag set, it closes its session with the EVAPE
by switching to the "close™ state 1401. The EVAPE
changed its state to "close" 1501 when sending the
EvPktMsg.

14. If the timer PktTime has expired three times
in sequence, while the EVA is waitiﬁg for an EvPktMsg,
it closes its session with the EVAPE internally by
changing its state to "close" 1401. ' '

'Very late EvPktMst which might have caused the
timer to expire three times will be discarded by the
EVA in the "close" state 1401.

15. The EVAPE could have reset after having sent
an EvPktMsg to the EVA. When the EVA receives the
EvPktMsg, it requests a further packet through a
NxtPktMsg. The EVAPE will respond to this by a
RejectMsg, because it is in its "close" state 1501
after the reset. Upon receipt of the RejectMsg, the
EVA (also) goes to "close" 1401.

The following are the messages that can be
dropped by the EVA depending on the session's state.

1. in "close" 1401

- NodeDownMsg from NTA 105 (no-op, session

already closed)

WO 89/07377) PCT/US89/00352

-38-

- NodeDeleteMsg from NTA 105 (nc-op,
session already clésed)
- EvPktMsg from EVAPE (only possible after
~ EVA crash or late paékets from just closed session)
- RejectMsg from EVAPE (only possible after
EVA crash)

_ - ConfirmMsg from EVAPE (EVA has probably
crashed in open phase)

2. in "open" 1402
- NodeUpMsg from NTA 105 (not likely, but
~wouldn't hurt, as session is already open)
- EvPktMsg from EVAPE (impossible)

3. in "next"™ 1403

- NodeUpMsg from NTA 105 (not likely, but
wouldn't hurt, as session is already open)

- ConfirmMsg from EVAPE (impossible)

7. EVA - DBS
The EVA interfaces with the monitor database DBS

by means of a function call to record all events it
receives from the EVAPEs into the DBS.

_ Basically the EVA translates the structure of an
event log record as it comes in an EvPktMsg into the
structure of the event record in the DBS. This is
quite a straightforward process. It is illustrated in
Fig. 16.

' At startup the EVA calls a function that returns
a table'mapping the node numbers into DBS wide unigue
NodelIcs. One node might be ccnfigured £or several
networks and thus its node number is not unique from
the DBS's point of view. A unigue ¥odeId has to be

filled into every DBS event record by the EVA.

WO 89/07377

PCT/US89/00352

The EVAPE on the node has to convert the time
stamp of each event into an absolute time (epoch
secs}). This is necessary, because the time bases of
any two nodes are potentially different. Hence, on
the monitor two event time stamps from two different
nodes cannot be compared without conversion to
absolute times.

The tokens of an event have are translated into
meaningful information for querying or report
generating purposes. This can be done via a function
call in the BEVA or by a separate process either beforé
storing the events into the monitor DBS or at
retrieval time.

As the event text string takes up a lot of disk
space when stored in the DBS, the translation should
probably be done whenever events are retrieved. An-
application process could be invoked by the user that

-accepts SQL statements, forwards them to the DBS and

runs a translation function over the raw event
information returned before displaying it to the user.

A wrap-in the sequence of events from one node is
entered into the DBS is a gap record, which basically
is a normal event record having an event type field of
"event log gap" and where the fields for the node-id
and the time stamp have been filled in.

In a similar way the loss of connectivity to the

ELM of a node is entered into the DB as a potential

loss of events. BAs it is not certain that events have
been lost during the time of no connectivity, so a
different event type will be used, like "unknown

state."

WO 89/07377

PCT/US89/00352

-40-

VII. Alarm Table Application

Introduction

The purpose for the alarm table application ATA

-is to collect and distribute the active alarms in the

‘network.

The ATA collects alarms from the IDNX alarm logs,

which are created and managed by the IDNX event log

manager ELM +task. An alarm table APE (ATAPE) is
created in each IDNX node to monitor alarm 1log

‘changes, and to send these changes in response to

queries, to the monitor ATA task. The monitor network
topology application NTA informs the ATA about the
state of the nodes monitored.)

Alarms are distributed to the monitor menu and
graphics interface console application MAGIC, and to
the monitor network alarm monitor NAM applications.
MAGIC uses this information to assign color dynamics,
indicating alarm state, to its gtaphic representations
of the network's components. NAM displays the alarm
information in a scrollable Suntools text-subwindow.
The ATA does not store alarm information in the ORACLE
database.

It is worth notihq that a reasonable alternative
to this scheme would have been to receive alarm
information from the monitor event application EVA,
which similarly collects events from the IDNX event
logs. (The IDNX alarm log is derived from the event
log) . - This approach would have eliminated the ATAPE,
and placed a greater burden on the EVA and its

-associated EVAPEs. In consideration of a number of

difficult synchronization problems between the IDNX

and monitor views of current alarm state, this

A]

L)

)

‘WO 89/07377

PCT/US89/00352
~-41-
approach was discarded. The synchronization issues
are:
1. Recovery from the . inevitable "event log

wrap" problem required a mechanism to collect alarm
tables to recover lost information. This introduced
several hairy synchronization problems.

2. The ATA's dependence on EVA would restrict
the EVA's freedom to apply filters to event collection
for the purpose of reducing network traffic.

3. The ELM would have to be modified to report
alarms which were manually cleared by the operator.

4. The monitor would have to recognize the
"alarm-clearing™ events. This is redundant with the
ELM logic which maintains the alarm table.

2. External Reference Specification

Fig. 17 illustrates the logical relationship
between the ATA 170 and the other processes it
communicates with, as well as the data flow between
the IDNX event log application ELM 172 and those

applications to which the ATA distributes alarms.

Oon the monitor node, the ATA communicates with
the ORACLE database management service 173, the
network topology application NTA 174, a network alarm
monitor NAM 175 and a menu and graphics interface
termed MAGIC 176. In the IDNX nodes distributed in
the network, the attached processor executor for the
alarm table ATAPE 177, supports a protocol with the
ATA on the monitor node. In addition, the object

‘manager OM 178 on each of the IDNX nodes is requested

to create and delete the ATAPE by messages from the
ATA 170 and the ATAPE 177, respectively. -

WO 89/07377

PCT/US89/00352

-42-

The ATA/ATAPE's external interfaces are described

in this section. Discussion of the ATA and ATAPE

internal design is described in Section 3.

2.1 ATA and ATAPE interfaces to the OM

The IDNX object managér ‘OM 1is responsible for
creating and delefing IDNX tasks. It is therefore
requested to create and to delete the ATAPE.

When the ATA is informed by the NTA than an IDNX
node is to be monitored, it sends a CREATE MSG to the
OM' on that node. There is no response +to this
message, therefore, the ATA will assume that the task
has been started. If the open-session protocol with
the ATAPE fails, the ATA will try to create the APE
task again. o

The ATA. 7 sends the CREATE_MSG to the
COEROCESSOR;?REEERRED_INSTANCE of the OM, so that the
ATAPE will be created on an IDNX co-processor-if one
is available. The intent is to minimize the impact on
the IDNX master CPU.

When the ATA is informed by the NTA that an IDNX
node is no longer being monitored, then the ATA will

.delete its ATAPE on that node. Since the ATA does not

know which CPU the APE is running on, and since the OM
DELETE_MSG must be sent to the OM which created the

‘ATAPE, the ATA requests the ATAPE +to send the

DELETE-MSG to the OM. There is no response to the
DELETE-MSG; the ATAPE will continue to run until the

OM receives the message, and preempts and deletes the

task. If the ATAPE deletion should fail {(e.g., the:

ATA's message to the APE is lost), then the ATA will
try to delete the APE again. -

The ATAPE task will be re-created by the ATA if
either the ATAPE abnormally ends or the CPU it is

»

WO 89/07377

PCT/US89/00352

-43-~

running on resets. This is part of the ATA-ATAPE
error recovery protocol described in the Internal
Reference Specification.

Multiple monitor workstations per IDNX network
can be supported with the restriction that only one
monitor is connected to any given IDNX node. To
simplify the design and implementation of the monitor
APEs, each monitor creates its own unique set of APE
ﬁasks'on each node which is being monitored. All IDNX
tasks are designated by a generic task id, and a
unique task instance; these values are specified in th
OM. CREATE and DELETE messages. The monitor APE
instances are derived from th node number of the IDNX
node to which the monitor is connected. This ensures
that each APE task will be created with a unique
instance, and that it will communicate with a single

monitor.

2.2 The ATAPE Interface to the ELM

The ATAPE collects alarm information from the ELM
alarm log. When the ATA opens a "session® with the
ATAPE, the ATAPE will copy the ELM's alarm log into a

local alarm table, and also into a message(s) to be
sent to the ATA. The ATAPE then gueries the alarm log
"summary" information to ‘detect changes (cleared,
altered, or new alarms) to the alarm log. When a.
change is detected, the ATAPE will re-read the alarm
log, posting changes both to its alarm table and to
the ATA.

~ The ATAPE reads the ELM alarm log wusing the
EVENTLOG ALARM TABLE message. - The ATAPE sends this
message to the ELM, specifying an offset into the
table, - and the ELM returns the message containing

WO 89/07377

PCT/US89/00352

—-44-

eight alarms -"starting at that offset. This exchange

.continues until the entire alarm log has been read.

The ELM maintains "summary” information
associated with the alarm log. This summary
information is queried using the

EVENTLOG_ALARM SUMMARY message. The ELM responds by

" copying the summary information, including a grand

total of active and total alarms, into the message and
returning it. The ATAPE compares the two grand total
values with the totals retrieved from its last summary
query. If the summaries have changed, then the ATAPE
reads the new alarm table; otherwise it waits a bit
and queries the summaries again. The ATAPE continues

to query summary information, and to update its copy

of the alarm log until it is deleted by the ATA.

If the ATAPE is created on the master CPU, then
it cogmnﬁcates with the master ELM task. If the

ATAPE is created on a co-processor, then it

communicates with the shadow ELM task. The interface

to these two tasks is essentially identical.

2.3 ATA Interface with MAGIC

The ATA distributes the alarm information
collected from the ATAPE tasks +to MAGIC. MAGIC
expects to be informed of only the most critical alarm

~on a particular network component if that component is

triggering multiple alarms. Once an alarm has been
reported to MAGIC, MAGIC expects to be informed of any
alarm state change on the component, including the
clearing of all alarms. When MAGIC is informed by the
DBA process that there is a new netwofk component, it

will query ATA for the alarm information on that
component.

“

®

WO 8907377 PCT/US89/00352

-45~

As alarm information is collected from the ATAPE
tasks, ATA distributes the information to MAGIC in
some number of GI_STATUS_MSGs. This message includes
the network component's device id in ASCII format
(e.g., NxxCyy.zz), and its current alarm state.
Multiple device-id/alarms records are placed in a
single message as long as there is room (up to
MAX_SCLP_MSG_SIZE). The alarm level values reported
to MAGIC are:

1. => cleared alarm

2. => informational alarm-
3. => minor alarm

4. => major alarm

5. => critical alarm

Until ATA reports alarms to MAGIC, MAGIC will
assume that there are no alarms in the network; thus,
the initial alarm state of the network is a "cleared”
alarm state. When the ATA program (re)starts, it
performs a handshake with the MAGIC application (if
MAGIC is running) which ensures that MAGIC initializes
all alarm states to a "cleared" alarm state. This
way, the programs re-synchronizé their view of alarm-
state for all network devices. The handshake is
composed of a GI_STATUS MSG from ATA with device id

‘set to “ALL", and alarm level set to "cleared alarm”,
followed by a GI_RESENDALL_MSG from MAGIC requesting

the ATA to send the current alarm state of all
alarming network components. As the ATA collects
alarms from the ATAPEs, this information is sent to
MAGIC.

. When MAGIC (re)starts, it will send the ATA &
GI_RESEND SPEC_MSG, requesting the current alarm state

of all alarming network components.

WO 89/07377 PCT[US89/00352.

~46-~

MAGIC queries specific alarm information from the
ATA with a GI_BESENf;SPEQ_MSG. This message contains
a list of network component device ids for which MAGIC
wants the current alarm state. The ATA responds with

' some number of GI_STATUS_MSGs.

The ATA validates the GI_RESEND_SPEC_MSG from the
MAGIC application. If any information in the message
has been detectably corrupted, the ATA logs an erxror
message to the monitor system message window.

The ATA is responsible for discriminating between
IDNX digroup and port devices. The alarm records
collected from the ELM do not make this distinction.
The ATA modifies the device id if the alarm is a port
alarm to the form NxxCyyPzz. If the alarm is a
digroup alarm, the form NxxCyy.zz is used.

2.4 ATA Interface fo NAM-
N AY
The ATA distributes the alarm information
collected from the ATAPE tasks to NAM. NAM expects to

be informed of all active alarms, all modified active

alarms (e.g., when the alarm is re-triggered, certain’
alarm record ihformation such as the count field is
modified), and all active alarms which have been
cleared. NAM displays most of the information
contained in the alarm records received from the ATAPE
tasks in a Suntools textsubwindow.

' As alarm information is collected from the ATAPE
tasks, ATA distributes the information to NAM in some
number of NAM UPDATE MSGs. This message includes the
alarm record structure retrieved from the ELM alarm
logs, and a function to perform relative to the alarm.
Multiple alarm record/function sets are placed in a
single message as long as there is room (up to

MAX SCLP_MSG_SIZE). The functions passed to NAM arec:

WO 89/07377

PCT/US89/00352

-47-

NAM ADD => to add the alarm to the
text-subwindow.

NAM MODIFY => to modify an alarm already
: displayed in the
text-subwindow.

NAM DELETE =>- to delete an alarm from the
text-subwindow.

Until ATA reports alarms to NAM, NAM will assume
that there are no alarms in the network; thus, the
initial alarm . state of the network is a "no" alarm
state. When the ATA program (re)starts, it performs a
handshake with the NaAM application (if NAM is running)
which ensures that NAM clears all alarms which are
currently displayed in its text-subwindow. In this .
-way,' the programs re-synchronize their view of the
alarm state for the network. The handshake is
composed of an ATA_RESET MSG from ATA, followed by a

. NAM_RESET_MSG from NAM requesting the ATA to send all

currently active alarms which it has collected. As
the ATA collects alarms from the ATAPEs, this
information is sent to NAM.

When NAM (re)starts, it will send the ATA a
NAM RESET_MSG, requesting all currently active alarms
which have been collected by the ATA.

The ATA is responsible for discriminating between
IDNX digroup and port devices. The alarm records
collécted from the ELM do not make this distinction.
The ATA modifies the device id in the alarm record
structure, by setting Bit 30 of the ElmNetAddr field
on if the alarm is a digroup alarm.

The ATA is responsible for informing the NAM when
a node is deleted from the monitor domain. This is
done by sending the NAM a NAM DELETE_NODE_MSG

WO 89/07377

PCT/US89/00352

-48-

containing the number of the node which has been
-deleted.

2.5 ATA Interface to NTA
The monitor network topology application (NTA)
informs the ATA when the status of an IDNX node which

is monitored by the monitor has changed. This

includes the addition of a node to the network, the.

deletion of a node from the network, and the loss of,
or gain in, connectivity to a node in the network.

When the ATA (re)starts, it sends the NTA and
ATA_RESET_MSG (it it is up). The NTA responds with an
NTA NODES_IN NET MSG, informing the ATA of the node
number of the IDNX node to which the monitor is
attached (called the "neighbor node), and the list of
nodes which are currently monitored and to which the
monitor has connectivity. The ATA creates ATAPE tasks
on each node contained in the list.

Following the ATA's (re)start handshake with the
NTA, the NTA will inform the ATA of changes in the
status of any node in the network with one of three
messages. Each message specifies a single node
number. The messages are:

NTA NODE_UP_MSG => whenever a new node is added to
the monitor domain, or whenever
connectivity has been regained
with a node which has "gone
down.

NTA NODE | DOWN MSG. => whenever a node goes down; i.e.,
connectivity with the node has
been broken.

NTA NODE_DELETED_MSG => whenever a node is deleted
from the monitor domain.

"

0

WO 89/07377 PCT/US89/00352

-49-

The ATA uses this information to determine which
nodes to create ATAPE tasks on, and whether there is
. any purpose in trying to communicate with an ATAPE
task with which it currently has a session. When a
NODE_DOWN message is received, the ATA suspends its
session with the ATAPE on that node. When a NODE UP
message is received, the ATA either c;:eates a new
ATAPE and establishes a session with it, or it resumes
an already active session which has been suspended.
When a NODE DELETED message is received, the ATA
deletes the ATAPE on that node.

The NTA also informs ATA when the HDLC link to
the neighbor node has become unavailable or
subsequently available. When the HDLC link becomes
unavailable, the NTA sends an NTA_ HDLC_LINK DOWN
message, and the ATA suspends all sessions with its
ATAPES. .

When the HDLC link becomes available again, the
NTA sends an NTA_HDLC_LINK_UP message. This message
‘has the same format as the NTA_NODES_IN_NET_MEgsAGE.
If the neighbor node number has not changed, the ATA
resumes the sessions with the ATAPE tasks on the nodes
which are listed- in the message. If the neighbor node
number has changed, the ATA deletes all the ATAPE
tasks which it has created, and recreates ATAPE tasks
on the nodes listed in the message, with a new task
instance number derived from the new neighbor node
number.

When the NTA application (re)starts, it sends the
ATA an NTA RESET_MSG which has the same format as the
'NTA_NODES_IN NET MSG. If the neighbor node number has
not changed, the ATA resumes sessions with ATAPE tasks
on any nodes from which it had not been collecting

alarms previously. If the neighbor node number has

WO 89/07377

PCT/US89/00352

-50—-

changed, the ATA deletes all the ATAPE tasks which it
has created, and recreates ATAPE tasks on the nodes
- listed in the message, with a new task instance number
derived from the new neighbor node numbér.

When the ATA receives an NTA_ RESET MSG, it also
reads the Node Table in the ORACLE database which
contains the node numbers of the IDNX nodes which are
currently defined in the monitor domain. This is done

to ensure that no nodes were deleted from the domain

while the NTA application was inactive. If the ATA-

has a session with an ATAPE on any node which is not
in the ORACLE node table, then that ATAPE is deleted.

The ATA validates every message received from the
NTA application. If any information in the message
has been detectably corrupted, the ATA returns the
message to the sender using the Kernel function Report
BadMessage(). . .The ATA also sends the NTA an
ATA RESET MSG to attempt to recover from the potential
loss of infofmation. An error message is also sent to
the monitor system message window.

2.6 Database Interface

The ORACLE database is used to retrieve node
numbers from the node table whenever an NTA_RESET MSG
is received. The format of the SQL query is: "SELECT
NODE . NODENMBR FROM - NODE, NET NODE WHERE
NET_NODE.NODEID = NODE.NODEID".

3. Internal Design Specification

There are two logical components of the alarm
table application. The first (resident. in the
monitors), is the ATA. The second is the ATAPE which

resides in each of the IDNX nodes in the monitor
network.

"

WO 89/07377

PCT/US89/00352

~51-

The ATA distributes alarms to MAGIC and to the
NAM. The ATAPE collects alarm table information £from
the IDNX event log manager ELM and conveys it to the
ATA.

3.1 The ATA Interface to the ATAPE
Wwhen the ATA is (re)started, it creates and

initiates a session with ATAPE tasks on each of the
IDNX nodes defined in the‘ monitor domain, and
retrieves their alarm tables. Thereafter, barring
session connection errors, the ATAPE sends periodic
status messages (idle or alarm changes) to the ATA.

The formats of the messages exchanged between the
ATA and the ATAPE are defined in Appendix A.

3.1.1 Session Initialization

. If the ATA creates more than one ATAPE at a time
(e.g., multiple new node number conveyed via an
NAT NODES_IN NET MSG), then it will stagger opening
each ATAPE session by a short cumulative delay. This

is +the only mechanism employed to stagger the

“individual ATAPE session activities. A session is

opened using the exchange illustrated in Fig. 18.

When the ATAPE receives the ATA'_OPEN_MSG message,
it copies the ELM alarm log into a local alarm table,
and constructs some number of A‘I‘A__ALARM_MSG messages
for the ATA. The messages are sent to the ATA in
response to ATA NEXT MSG messages, one alarm message
at a time. Each alarm message contains as many ELM
alarm records as possible (up to MAX__SCLP__MSG_SIZE).
The alarm messages will be buffered by the ATAPE until
an ATA_NEXT_MSGV, acknowledging the receipt of the
message, is received by the ATA. Message numbers

(modulo 256) are useé to acknowledge positively or

WO 89/07377

PCT/US89/00352

=52~

negatively the ATA-ALARM-MSG from the ATAPE. When a
negative acknowledgmént is received from the ATA, the
ATAPE will retransmit the last ATA ALARM-MSG.

The last ATA NEXT MSG in this session
initialization exchange is used as an outstanding
request for an alarm table status message. This is
described further in the following section.

The ATAPE is responsible for translating the
alarm record timestamps from the IDNX's internal time
format to the monitor's seconds since epoch SSE
format. The IDNX maintains an SSE clock which is

initialized indirectly by the monitor NTA application.

3.1.2 Normal Session Procedures

The normal session protocol is designed to
achieve a balance between minimal network traffic and
timely collectiongf alarms from the IDNX nodes. It
is illustrated in Fig. 189.

The normal scenario requires the ATAPE to start
an idle timer after an ATA NEXT MSG is received and if
there are no alarm table changes +to send. When the
timer expires, and if no alarm table changes have been 4
accumulated, the ATAPE will send an ATA_IDLE MSG to
the ATA. This is an unnumbered message, requiring no
response from the ATA. It merely informs the ATA that

the ATAPE is still responsive. (The ATA maintains an

ihactivity timer +to recover form +the case where
communication with the ATAPE has been interrupted.
This is discussed in the next section.)

While the ATAfE's idle timer is decrementing, it
will continue to check the ELM's alarm log for changes
at regular intervals. When changes are detected, they
are copied into the APE's local alarm table, and

ATA ALARM MSG messages are subsequently constructed to

WO 89/07377

PCT/US89/00352

-53-

convey the changes to the ATA. The ATAPE will fit as
many changed alarm records into the ATA ALARM MSG as
possible (limited by MAX_ SCLP_MSG_SIZE). The response
from the ATA to an ATA ALARM MSG is an ATA_ NEXT MSG
with the message sequence count inéremented by one.

once the alarm log has been initially conveyed to
the ATA during session jnitialization, only changes
(new, altered, and cleared alarms) to the alarm log
are conveyed to the ATA. The ATAPE maintains internal
accounting in its alarm table which indicates which
alarm records need to be conveyed to the ATA when the
next set of ATA-ALARM-MSGs are constructed.

The format of the ATA-ALARM-MSG specifies that
active alarm records are sent using the ATAAlarmEntry
structure definition. Cleared alarms are sent in
compressed form. Since the ATa maintains its own
internal copy of the ELM alarm logs as well, this
amounts to conveying which alarm log record has been
cleéred; the contents of the cleared alarm record are °
not sent.

The synchronization between the ATAPE's interface
with the ELM, and its interface with the ATA is
sensitive to the fact that there is a real possibility
that any given copy of the ELM's alarm log may not be
consistent. This is due to the fact that the ELM may.
be updating the alarm log_while the ATAPE is reading

" it (it takes several exchanges with the ELM to read

the entire table). Thus, the ATAPE verifies that
alarm summaries have not changed between the time it
starts to read the alarm log and the time it finishes
reading the alarm log. If the alarm summary
information has changed, the ATAPE reads the alarm log
again, and continues to do soO until the alarm log has

stabilized. There is a limit to the number of times

WO 89/07377

PCT/US89/00352

~54-

that the ATAPE will reread the alarm log, before

sending a response to the ATA (to avoid timing out its

interface with the ATA, or unnecessarily delaying
alarm updates to the ATA). ﬁhen this 1limit is
reached, the ATAPE will verify that although the alarm
log may still -be in a state of flux, that it is
consistent (é.g., there are no "duplicate®™ alarm
records. Duplicate alarms occur when an alarm record
is preempted by a more critical alarm, and then is
re-inserted into the table while the ATAPE is reading

the alarm log).

3.1.3 Session Error Recovery and Session Termination
3.1.3.1 Lost Message Recovery

The ATA is responsible for recovering messages

which have been lost due to trunk downs, abnormal

network delays, or IDNX task and node failures. For

_this purpose, the ATA initiates an inactivity timer

whenever it sends a méssage to the ATAPE. This timer :

has a relatively 1long expiration period since this
type of recovery is considered to be rare. When the
timer expires, the ATA re-transmits its last message,
and re-starts its inactivity timer. The ATA will
attempt to recover three times, before concluding that
t+he session is not recoverable.

If the recovery attempt fails, the ATA will
inform the ATAPE to delete itself, re—Creaté the ATAPE
task and re-open a session with it. This procedure
will be repeated until either the ATAPE responds, Or

-the NTA ‘informs the ATA that the node has gone down or

that it has been deleted from the monitor network.

L]

WO 89/07377

PCT/US89/00352

~55-

3.1.3.2 Application Resets

When the ATA restarts, it will. create and open
sessions with the ATAPE tasks. If the ATAPE already
exists from a previous incarnation of the ATA, then

the ATAPE will reinitialize its session with the ATA,
and send a full copy of its alarm table to the ATA.

If the ATAPE task abnormally ends and is
restarted by the OM, then it is possible for the new

'ATAPE initially to receive a message other than an

ATA OPEN MSG from the ATA. 1In this case, the ATAPE
will send the ATA an ATA-RESET MSG. This causes the
ATA to reinitialize the session with an ATA_ OPEN_MSG
response. When the ATA receives the new alarm table
from the ATAPE, it will compare the table record by
record with its internal. (old) copy of the table.
Differences will be noted, and appropriately conveyed
to the MAGIC and.NAM applications. This exchange is
illustrated in Fig. 20.

The ATAPE maintains a very log inactivity timer
on its interface with the ATA. The timer is long
enough to sustain the ATA-ATAPE session over normal
trunk outages. The purpose for the timer is that the
ATAPE task will delete itself if there is no ATA to
+talk to after a suitably 1long interval. This
addresses the possibility that the ATA's
ATA_DELETE_MSG to the ATAPE is dropped by the network.
It also addresses the disconnection of the monitor
from the network for a long period of time (e.g., the
user logged out of the monitor for the weekend).

The ATAPE also maintains an inactivity timer on
its interface to the ELM. If the ELM does ﬁot respond
to the query for summary information, the query will
be resent some number of times. This is done since

the ATAPE might request the summary information before

Al

WO 8907377

PCT/US89/00352

~56—

the shadow ELM has completed its initialization with
the master ELM. If the ELM does not respoﬁd while the
ATAPE is reading the alarm log, then the ATAPE task
will abnormally terminate itself. The ATA will

re—-start the ATAPE as described in the preceding
section.

3.1.3.3 Session Termination

The ATA deletes the ATAPE when it receives an
NTA_NODE_DELETED MSG from the NTA. The ATA sends an
ATA DELETE MSG to the ATAPE. The ATAPE sends the
TASK_DELETE message to the OM on the CPU it is running

on, and continues normal session processing. The OM
will subsequently preempt and delete the task.

3.2 ATA Program Internals

This section describes the major data structures
and methods created in the ATA to perform the
functionality described in the preceding sections.
The ATA program was written to run above an IDNX-like
Kernel layer, as 'is provided in the monitor
environment. All system level services required by
the application are obtained through this Xernel
layer. There is no static memory imbedded in the
program; all data space is obtained via RegMem() calls
to the Kernel layer.

3.2.1. ATA Major Data Structures

. The data structures are defined in Appendix B and
are referenced in the following description.

The major data structures in the ATA application

are the global data area, the node table (NT), the

session control table (SCT) and its associated session

“

"y

WO 89/07377

PCT/US89/00352

-57-

control block (SCB), and the network alarm table
{NAT) .

3.2.1.1 Global Data Area
The global data structure is the primary data

structure for the application. It contains pointers
(directly and indirectly) to all other data managed by
the application, except for local routine data
variables allocated on the application stack spaée.

The timer block pointer (ptimers) points to a
Kernel level timer maintained for the ATA application.
This timer is used to manage the ATAPE session
activity. An associated timer variable (SessnTimer)
is also defined in the global data area. The kernel
timer is started when the application begins, and
expires by default at regular intervals for the life
of the application. Each time the timer is reset, the
time that it will go off is stored in the SessnTimer
variable. A description of this timer's wusage is
deferred until the ATAPE session control block is
described. . .

The other variables in the global data area are
for information which the application needs and that
are global in scope to the.,application; such as
session timer values, the number of retries which will
be performed relative to the ATAPE sessions, the state
of the NAM and MAGIC applications, and the node
numbers for the monitor and its neighbor node.

The program keeps track of the state of the
applications to which it distributes alarms, to avoid
errors incurred by trying to send messages to them
when they aré not active. When the ATA (re)starts, it
determines the state of NAM and MAGIC using the Kernel

_FindTask() =service. If the task is up, the startup

WO 89/07377

PCT/US89/00352

-58-

handshake 1is performed, and- the Boolean (NamUp or

‘MagicUp) is set TRUE. When the return handshake is

received, ATA requests the Kernel to notify it should
the application terminate, by sending the Kernel a
SEND_NOTIFY MSG. The Kernel returns this message when
the application terminates. Before sending alarm
information to the MAGIC and NAM applications, the ATA

consults their respective state Booleans in the global
data area.

3.2.1.2 Node Table

The node table (NT) primarily associates IDNX
node. numbers with an index into the session control
table; This is used to retrieve the appropriate
session control block for managing the session with a
particular ATAPE task. '

The note table also keeps track of the state of

each node, but this has "only been partially _

implemented, and serves only an incidental part in the
functiohality of the program.

3.2.1.3 Session Control Table and Session Control
Block

The session control table is a fixed length array
of session control blocks. The session control block

is the controlling data structure for a particular
ATAPE session. ‘

The ATAPE sessions are state-driven and the SCB
variable, SessnSts, defines the current state for an
ATAPE. When the ATA suspends an ATAPE session becausé
a NODE_DOWN message was. received from the NTA, then
the current state is backed up in the SCB variable,
SessnPendSts, and the SessnSts is set to indicate a

*

‘WO 89/07377

PCT/US89/00352

-59-

suspended session state. The possible session states
are:

NULL_ SESSN state used during error recovery
when an ATAPE task has Dbeen
deleted, and is to be re-created
after a short interval.

DORMANT SESSN state between creation of an ATAPE
task, and session initialization.

OPENING_SESSN state while the ATA is waiting for
the ATAPE to respond to the
OPEN_MSG.

ACTIVE SESSN .state during which the ATA expects
to receive alarm and idle messages
from the ATAPE.

SUSPENDED_SESSN state during which the session
has been suspended, pending re-
connectivity to the ATAPE's node.

There are a number of variables in the SCB used
to control the session such as the node number the
ATAPE resides on, the retry counter used for error
recovery, and the current session message counter used
to detect out-of-sequence méssages.

The SCB timer variable is used to drive the
various session startup and error recovery activities
which the ATA performs while managing the ATAPE

‘sessions. When a particular activity (such as sending

the ATA OPEN_MSG) is scheduled to occur, the ATA sets
the SCB timer variable. Then the 'ATA checks . the
overall session timer variable in the global data area
to determine when the session timer is due to expire.
If it is due to expire before the ATAPE timeout value,
then nothing is done. If the session timer is due to
expire after the ATAPE timeout value, then the ATA
resets the session timer to expire at the earlier
time. When the global session timer expires, the ATA

WO 89/07377

PCT/US89/00352

—-60—-

scans each ATAPE timer value to determine which ATAPE
session requires some activity to be performed.

There are three linked lists defined in the SCB
for buffering iﬁcoming alarm messages from the ATAPE
tasks, and outgoing alarm messages to the MAGIC and
NAM tasks. The ATA must process an entire snapshot of
the alarm table before the alarm information is

distributed . to MAGIC and to NAM. The risks in not

doing so are related to the architecture and
algorithms used by the ELM to manage its alarm log.
The symptoms which would result from not buffering in
this fashion include redundant and erroneous alarm
information to both NAM and MAGIC.

The SCB variable, AlarmTblLen, is used to
accommodate a variable alarm table size across the
IDNX network. - Although the alarm log has a fixed
size, it is anticipated that the alarm log size will
be increased to meet the demands of larger, more
complicated networks. When this is done, it will be
possible for ATAPE tasks on different machines to be
monitoring different size alarm 1logs. The ATAPE
therefore reports the size of the alarm log to the ATA
during session initializvation,‘ as part of the

/ATA_OPEN_MSG handshake. This size determines the

length of the ATA's copy of the alarm log (NAT - this

- 1s discussed subsequentlyv), and the maximum number of
alarm messages which the ATA will expect to receive -

from the ATAPE in a single snapshot of the alarm log
(SCB variable MaxAlarmMsgs).

The network alarm table for a given ATAPE is
pointed to by the SCB variable pNat. This table is

‘discussed in the next section.

[

WO 89/07377

PCT/US89/00352

-61-

3.2.1.4 Network Alarm Table
The network alarm table (NAT) contains an image

of the relevant alarm information maintained in the
ELM alarm log. There is one NAT per ATAPE.

Each record in the table contains a state
variable used to discriminate active versus inactive
alarms, and whether the first image of the ELM's alarm
log has been received from the ATAPE, the lievel of the
alarm (inactive alarm, or the criticality of an active
alarm), the alarm record in AtaAldrmEntry format, and
two pointers used to maintain a series of linked lists
of alarm records wound through the NAT structure.

The ATA maintains an image of the alarm log,
rather than a list of active alarms, for expediency
both during implementation and during execution.
Updates to the NAT are accomplished directly using the
alarm table index provided in the ATAPE's
ATA ALARM MSG records.

The linked 1list pointers in the NAT record are
used to 1link all of the alarms for a given network
device together. The first alarm record in any list
represents the most critical alarm for that device.
Updates to the NAT entail not only revising the alarm
information, but also the link list pointers relative
to the other alarms in the table for that particular
device. The complexity introduced by the 1lists and
the logic reguired to . maintain them, expedite the
distribution of alarms to MAGIC. In general, an alarm
is reported to MAGIC if it is at the top of the linked
list, or if it was previously active and has been
cleared.

The ATA must recogﬁize when one active alarm
record has been bumped from the alarm table in favqr

of a more critical alarm. This alarm may or may not

WO 89/07377

PCT/US89/00352

-62-

be for the same device. In most cases, ATA must
interpret this as the deletion (or clearing) of one
alarm, and the addition of a new alarm, and
appropfiately report the results to MAGIC and NAM.

3.3 ATAPE Program Interhals
This section describes the major data structures
and routines created in the ATAPE to perxform the

- functionality described in the preceding sections.

3.3.1 ATAPE Major Data Structures
- The data structures are defined in Appendix C,

and will be referenced in the following description.

The major data structures in the ATAPE
application are the global data area, the session
control block SCB, the ELM control block ECB, and the
alarm table AT. .

3.3.1.1 Global Data Area
The global data structure is the primary data
structure for the ATAPE. It contains pointers

" directly and indirectly to all other data managed by

the application, except for local routine data
variables allocated on the task's stack.

The timer block variable, pTimers, points to a
block of timers managed by the Kernel for the ATAPE
task. The ATAPE keeps four timers:

SessnWatchdog used as a long timeout on the ATA-ATAPE
session. When this expires the ATAPE
sends the ATA an alarm message (empty
if there are no alarm changes) in order -
to solicit a response from the ATA.
The timer is then reset. If it expires
again, the ATAPE deletes itself.

SessnIdle used to determine when a response must

WO 89/07377

PCT/US89/00352

-63-

be sent to the ATA to avoid timing out
the session interface. Either an idle
or an alarm change message is sent when
this timer expires.

ElmWatchdog used to determine a no-response
situation with the ELM.

ElmPoll used to drive the alarm summary queries
at a regular rate.

The SCB, ECB, and AT data structures will be
discussed subsequently.

The variable AlarmsPending is a flag between the
ELM interface logic and the ATA interface logic to
indicate that changed alarms are pending for the ATA.
The variable, ChngdAlarmCnt, indicated the number of
alarms records which have changed.

The semaphore ATLocked, is used by the‘ ELM
interface logic to inhibit the sending of changes'in
the alarm table until a consistent copy has been
obtained. When the ATA interface logic detects that
alarm changes have occurred (AlarmsPending), it will
attempt to send an alarm message. If the ATLocked
semaphore is set, an enmpty alarm message will be

constructed.

3.3.1.2 The Session Control Block
The session control block contains all variables

necessary to manage the ATA-ATAPE session interface.

>

The session interface is state-driven. The
possible states are:

DORMANT_ SESSN state after the ATAPE starts up, and
before it receives an ATA OPEN_MSG from
the ATA.

OPENING_SESSN state after the ATAPE receives the
’ ATA_OPEN_MSG, and before it receives
~ the first ATA-NEXT-MSG from the ATA.

WO 89/07377

-~

PCT/US89/00352

-64—

IDLING_SESSN state when there are no alarm changes
. to be sent. :

ALARMING SESSN state when there are either alarm
changes to be sent, or the SeenWatchdog
timer has expired and a null alarm
message has been sent. In either case
a response is expected from the ATA.

The other wvariables in the session control block

control the message sequencing and message buffering

necessary to achieve the functionality already
described.

3.3.1.3 The ELM Control Block

The ELM control block ECB controls the interface
to the ELM task. This interface is state-driven and
the two states (POLLING_SUMMARIES and READING_ALARMS)
define whether the ATAPE is polling summaries (waiting
for alarm changes), or reading the alarm table and
recording changes in its local alarm table.

The variables, TotalAlarmCnt and ActiveAlarmCnt,
reflect the last alarm summary information received

from the ELM, and are compared with the next set of

summary information in order to detect changes to the
alarm table. This subset of the ELM's summary
information is sufficient for detecting all new,
changed, and cleared alarms in the ELM's alarm log.

 The pointer variable, pReqSummMsg, is used to
keep track of the 'message buffer used to read the
alarm log. The same message which is sent by the
ATAPE, is returned by the ELM, and sent again by the
ATAPE until the entire alarm log is written.

The variables, RegAlarmBlk and RetryCnt, are used

for detecting and recovering from errors in the
exchanges with the ELM.

i

(-3

‘WO 89/07377

PCT/US89/00352

-65-—

The variable, ElmTid, identifies with which ELM
(master, or one of several possible shadow ELMs) the

ATAPE is communicating.

3.3.1.4 The Alarm Table
The alarm table (AT) contains an image of the

relevant alarm information contained in the ELM's

alarm 'log. It also contains a flag in each alarm

record indicating whether the alarm record has changed

‘since the last snapshot was taken and queued to the

session interface.

VIII. Design of the Monitor Database Application

1. .Introduction

The DBA is responsipl_e for maintaining accurate
information about IDNX configuration databases, and
real-time trunk status in the network. It receives
the physical database blocks from the APE (Attached ’
Procéssor Executor) and translates this information
into DBMS (ORACLE) requests, i.e., gives the physical
blocks logical meaning.

Fig. 21 is a block diagram of the applications
and data flow during a database upload from an IDNX
node to the monitor node. The monitor node includes
the database application DBA 2100, a DBA translate
module 2101 and the monitor database based on ORACLE
2102. In addition, the network topology application
NTA 2103 is on the monitor node. On each of the IDNX
switching nodes distributed in the network, there is a
database application attached processor executor DBAPE
2104, the IDNX node database DBC 2105 and an IDNX
communications task 2106 generating real-time trunk

information.

WO 89/07377

PCT/US89/00352

-66-

‘The IDNX database DBC consists of a plurality of
128-byte blocks and checksums for data contained in
the blocks. Operation of the applications running as
shown in Fig. 21 is described below

2. Getting the Data

The DBA must upload databases and accept changes
to databases in such a way as to prevent message
overruns on the IDNX node to which the monitor is
attached. It may deal with the nodes in the network
serially or in parallel. The actual protocol and
messages are described below. The protocol allows for
an efficient use of bandwidth and of IDNX resources.

The DBA must be notified by the Network Topology
Application (NTA) when nodes which are to”be monitored
are cut off from the monitor and again when they are
reachable. This includes failure of the link between
the monitor and fhe IDNX, the DBA must be informed
first of-the failure and then when the link comes up
again. '

The DBA must maintain continuity even across DB2
crashes, monitor crashes, ahd even IDNX node craéhes.

3. Translating the Data.
' Translation from physical database to DBMS format

is a two-step process, first from physical blocks to

logical entities, and second from the logical entities

' to DBMS table entries. To translate the data, the DBA

must keep a copy of a node's physical database at all
times as a reference to detect changes.

-The key here is to be able to limit the effort in
translation when only a few blocks change. The

translation process at step two is where this can be
accomplished. 4

2]

ke

WO 89/07377

PCT/US89/00352

-67-

) The actual translation process uses the IDNX
stfuctures to define the physical layout of the
database. The incoming data blocks from the node are
compared with the copy of the database kept locally
and the location of the changed bytes is mapped to the
IDNX structures. This reveals which logical changes
have been made and special code to handle each type of
logical change is called to make the translation to
DBMS SQL data. Since certain values in some logical
record fields have different meanings depending on -
other fields (e.g., the status field of a card record
depends on the card type £field) the physical to
logical mapping is non trivial.

4. Interface with Other Monitor Tasks
The Network Topology Application {NTA) is
responsible for notifying the DBA of node up and node -

down events. When the DBA receives a node up event,
it either creates a DBAPE on the target node and gets:
the initial copy of the database for the node, or it
checks with the DBAPE for any changes to the node's
database. If changes are detected, the DBA sends a
message to the NTA indicating that the node database

‘has- changed and that an upload will be made. After

(possibly not) uploading the database, the DBA sends a
message to the NTA indicating that the initialization
is complete. Functionally this means that the DBMS
database on the monitor has been completely updated
and is in a valid state for that node. Only then does
the NTA notify the other monitor tasks. that the node
is "up”.

When a change to a nodé database is recorded by
the DBA, it must send a message to MAGIC (the graphics

interface to the tuser) indicating the chanc . data in

s

WO 89/07377

PCT/US89/00352

-68—

order to. keep the user interface current. As the DBA
makes changes to the DBMS, it keeps track of the

changes, and when finished notifies MAGIC with MAGIC's

' defined messages for adding, deleting, and modifying

objects.

5. DBA Data Structures _
The DBA keeps track of the node data in a linked
list of node structures illustrated schematically in

~Fig. 22. When a message from NTA arrives to add a new

node 2201, a new data structure 2202 is allocated and
added to the list. If later NTA sends a delete node
message 2203, its data 2204 is deleted from the list
and de-allocated. The number of nodes the application
can handle is therefore limited only by the amount of
memory available, there are no hardwired limits. The

‘node structure is made up of checksums 2205, database

blocks 2206, pending blocks 2207, and miscellaneous
DBA 2208 and ORACLE data 2209. The database blocks
consist of all the database blocks in the node
database as well as the real-time data (in block
format). The checksums are the checksums for each of
these blocks. The pending blocks area consists of a
list of block numbers, block data, and checksums for
blocks that have been received but not verified yet.
To be verified, the nextfgroup of blocks or an ‘'all
ok' message must arrive from the APE. Once bldcks are

- verified, they are transferred to the database block

area and the checksums are updated. The miscellaneous
area for ORACLE is used to hold an ORACLE checksum and
table indexes (for efficiency). The miscellaneocus
area for DBA holds the node number, the node up/down
state, a pointer to'the last ITC message sent, timer
counts and ‘ack' failures.

.

wO 89/07377

PCT/US89/00352

-69-

Once the APE has finished uploading data, it
sends an "all ok" message. This triggers the DBA to
begin translating (block 2101) the data to the DBMS.
When this translation is complete and the DBMS 2102
has been updated successfully, the node data is saved
to disk as the last known stable state of the node.
Thus, incoming changes are made in RAN, and when
complete, the RAM image of the node is coﬁpared with
the disk image (which reflects the information in the
DBMS) to find the differences for translation. The
disk image is also used to recover from system
crashes. The ORACLE checksum is used to protect
against the DBMS changing (from a crash or a
re—initialization) while the disk file does not. If
this happens, the ORACLE checksum kept in the disk
file will not match the checksum kept in ORACLE, and a
éomplete reload of the DBMS from local data is
triggered.

6. The Database Ape

The database APE (DBAPE) is the monitor database
application surrogate in the IDNX world. It runs on
the same CPU as the IDNX DBC task which is responsible
for the IDNX database. The CPU is the coprocessor CPU
if one is available, but may be the master CPU if none

other exists, thus the DBAPE runs in a "COPROCESSOR

P’REFER_RED " mode.

' The APE has three major data structures
jllustrated in Fig. 23 at block 2301. One is the set
of all the most recently acknowledged@ checksums 2302,
that it has sent to the monitor DBA. The next is a
list of the blocks (dirty flags 2303) needing to be
uploaded to the monitor DBA. The last is a set of

real-time data 2304 received from the trunk tasks 2307

WO 89/07377

PCT/US89/00352

~70-

as a result of trunk status changes. This real-time
data is packaged into database sized blocks, checksums
2306 are calculated, and thereafter the blocks are
treated as "extra™ physical database blocks.

47, Database Initialization and Reinitialization

When the APE starts up, the set of all real-time

-information is initialized and the list of blocks to

be uploaded (the "dirty" blocks) is cleared. The APE
then waits, gathering any real-time data, until a
message is received from the monitor DBA.

The APE reads the DBC data blocks and checksums
directly from memory, with no formal interaction with
the DBC itself, and the real-time data blocks are read
from its own internal data structures. When a request
for initialization arrives, the data blocks are all
marked for upload, and then packaged and sent to the
DBA. When a request for changes arrives, the DBA
checksums are compared to the DBC checksums (and
real-time checksums), the data blocks whose checksums
differ are marked for wupload, and then all blocks
marked for upload (whether from this session or an

unfinished previous one) are packaged and sent to the
DBA..

8. Database Changes

When changes occur to the IDNX database, or the
real~-time information, the APE can initiate a change
message to the DBA. Every 20 seconds, the APE
compares checksums and marks any changed blocks as
*dirty" (lines 2305). Real-time information cﬁanges
are sent directly to the APE by the IbNX
communications tasks 2307. If any changes -are found,

the blocks can be sent to the DBA. This ' can only

g

WO 89/07377

PCT/US89/00352

-71-

happen, however, when there are no outstanding message
transfers in progress, to prevent flooding the network
with messages. Only one outstanding message is
allowed at a time. If no response is received, no
further messages may be sent until contact with the
DBA is reestablished.

9. Messages And Protocols

Thg messages and protocols are designed to
minimize the nessage traffic over the network and the
time and resources used in the IDNX.

There are ‘three messages from the DBA to the
DBAPE. Each one (possibly) triggers a flow of data
packets from the APE. In the case of changes to the
IDNX database this transfer can be initiated by the
APE, but always with an ACKing protocol that will
prevent a flood of messages to the DBA. There are
three messages from the DBAPE back to the DBA. All
messages start with an ITC header. '

The packet formats below allow for more than 255
128 byte blocks per database. The block numbers are
contained in a ‘short' rather than a ‘char'. The
release 7 database already has nearly 250 blocks, and
the real-time data uses 2 additional blocks, so this
precaution seems reasonable.

APE interface:

Three types of messages are sent from the APE to
the Application -~ something has changed, nothing has
changed {no more changes), and DBC has failed (for
info only). _

The ‘changes' message is sent either in response.
to a query from the application or initiated by the
APE when changes are detected in the IDNX database.

It includes the message exchange number (0 if the APE

WO 89/07377 : PCT/US89/00352

-72—~

initiates), the total number of blocks that have
changed, the number of blocks in this message, the
block numbers, their checksums, and their data.

DBA Changes_Msg

- struct ItcHeader Hdr
-~ unsigned char exchangenum
- unsigned short CurNumChangedBlks
- unsigned char NumBlocks
-~ unsigned short BlockListTbl
- {MAX_DB_BLOCKS_PER MSG]
- unsigned short BlockCsumTbl
[MAX DB_BLOCKS_PER MSG]
~ unsigned char DB _Data[MAX DB_BLOCKS_PER MSG]
_{DB_BLKSIZE]

The ‘no changes' message is sent in response to a
query from the application only if +there are no
changes in the database, or as the last message after
senﬁingfchanges*to*indicate that there are no further
changes and the data is consistent. It includes the
message exchange number and the current global
database checksum

DBA No_Changes_Msg

- struct ItcHeader HAr
- unsigned char exchangenum
- int CurDBGlobCsum

4

The 'fDéC failed' message is sent in response to a
query or by the APE if a DBC failure is detected. It
includes only the message exchange number.

DBA_DBC_Failed Msg

— struct ItcHeader HdAr
- unsigned char exchangenum

WO 89/07377

PCT/US89/00352

-73-

DBA interface:
Three types of messages are sent from the.

Application to the APE - an acknowledgement of a data

packet received, a request to upload the whole IDNX

. database, and a redquest for changes to the database.

The 'ack' message is sent in response to a data
packet ('changes' message) from the APE. It includes
the message exchange number the application will
expect, and the number of blocks, the block numbers,
and the block checksums of the APE message it is

acknowledging.

DBA Ack DB_Ape_Msg

- struct ItcHeader HdAr

- unsigned char exchangenum

— unsigned char NumBlocks

- unsigned short BlockListTbl
[MAX DB | BLOCKS PER MSG]

- unsigned short BlockCsumTbl
(MAX DB_BLOCKS_PER MSG]

The ‘send all’ message is sent to the APE when the
application doesn't have a copy of the IDNX database
(‘havedata' is FALSE). This requests the APE to
upload all of the database blocks. It only includes

the message exchange number the application will

expect.

DBA_Send_All_Msg

- struct ItcHeader Hdr
- unsigned char exchangenum

The ‘send changes' message is sent to the APE
when the application has a copy o0f the IDNX database.
("havedata' is TRUE), and wants to update any changes.
The APE is requested to upload only blocks which have

WO 89/07377

PCT/US89/00352

-74-

changed. -It includes the message exchange number the
application will expect, the global database checksum

and the application's block checksum values.

DBA_Send_Changes Msg

- struct ItcHeader Hdr

- unsigned char exchangenum

- int CurDBGlobCsum

unsigned short BlockCsumTbl [DB_NUMBLKS!

NTA Interface:

Three types of messages are sent from the

Application to the NTA -~ a reset message when the

application has reset and needs to know which nodes
are in the network, a database valid message when the
APE has finished uploading and translating data for a
node, and..a. database changed {(changing) message when

the APE detects that a node's database has changed and

needs to be uploaded. ,

The ‘nta' message is used for all NTA messages.
It consists only of a 'data' field which holds the
IDNX node number for a ‘'valid' or 'changed' message.

This field is undefined for the ‘reset' message.

#define DBA_NTA DBA RESET MSG
(DBA_INCS_MSGS_BEGIN + 0)

#define DBA NTA DB_VALID+MSG
(DBA_INCS_MSGS_BEGIN + 1)

#define DBA NTA DB_CHANGED_MSG
(DBA_INCS_MSGS_BEGIN +2)

DBA NTA Msg

- struct ItcHeader HdAr
- short data

“a

WO 89/07377

PCT/US89/00352

~-75-

These messages are expected from the NTA:

The NTA_ALL_NODE UP_MSG alerts dba that a
specific node is up and is reachable.

The NTA_NODE_DOWN_MSG alerts dba that a specific
node has gone down or is unreachable.

The NTA_NODE_DELETED_MSG alerts the dba that a
specific node has been deleted from the monitor
domain.

The NTA HDLC_LINK DOWN alerts the dba that the
HDLC link has gone down,

The NTA_ALL LINK_UP_MSG alerts the DBA that the
HDLC link is up.

The NTA_ALL_NODES_IN_NET MSG gives information
about all nodes that are up in the monitor domain.

The NTA_RESET MSG alerts the dba that NTA has

reset.

10. Message Protocols

' Since the message passing between the DBA and its
APE occurs at the datagram level, extra protocols must
be used to ensure that messages arrive in order or
even that messages arrive at all. The DRA - DBAPE
protocol addresses the message delivery problem by
requiring messages to be 'ack'ed either by a specific

tack' message from the DBA, 6i-by a response from the

DBAPE. Another problem is that messages can be

delayed in the network. An earlier message can arrive

‘after one sent later, poésibly bringing stale, or out

of date news.

To make sure the database always reflects the

correct and current state of the node, the message

passing protocol used between the DBA and its APE uses
a signature byte (the exchangenum) to ensure that old

messages are discarded. The exchangenum 1s an

WO 89/07377

PCT/US89/00352

-~76~—

unsigned byte quantity which wraps from 1 to 255 and
back to 1 again (skipping zero). The special value,
zero, 1is reserved for unsclicited messages from the
APE. The exchangenum is incremented when this message
is received and otherwise only when an error in a
message exchange is encountered. _

As illustrated in Fig. 24, the DBA keeps track of
the exchangenum it expects to receive. The APE only
echoes what it is sent. This simplifies
eynchronization in case the APE or the DBA crashes.
This is why, if the APE initiates the message, it sets
the exchangenum to zero (Fig. 25), since it does not
know the exchangenum to use.

For example, if messages are being transferred
and the current exchangenum is 22, and an ‘'ack'
meseage from the DBA to the APE is delayed‘ in the
network, the DBA could time out and resend the ‘ack’'.
In this case the exchangenum for the new ‘ack' is
incremented to 23. If both messages are received by.
the APE, a reply is sent for each. Only the reply
with the exchangenum of 23 will be accepted by the
DBA, the one with 22 will be discarded (see Figs.

26-30) .

li. Protocol

During normal operation, the DBA sends'a 'send

' changes' message to the APE with a complete list of

checksums. The APE compares the checksums to the DBC
checksums and the real-time checksums, and begins
uploading the changed blocks. Each upload message
contains up to six database blocks, their numbers, and
their checksums. Upon receipt of the changes, the DBA
‘tack's the message by returning the blocknumbers and
checksums it received. The data is held in the

WO 89/07377

PCT/US89/00352

-77-

pending area. The APE gets the 'ack' and uses the
checksums in the ack message to update its checksum
area. This ensures that its idea of the known
checksums and that known to the DBA are the same.
Reéeiving the 'ack' frees the APE to send the next
batch 'of changed blocks. When this next message is
received by the DBA, the blocks being held in the
pending area are considered valid and are ‘loaded into
the main database block area. The new blocks take
their place in the pending area, and are ‘ack'ed as
before. This continues until an 'all ok' message is
received from the -APE. The pending data is loaded

into the main area, and the translation routines are

‘called. The current numbers for a complete upload of

a node are: 252 database and real-time blocks at 6
blocks per message, or 42 messages.

when communication is difficult (lots of lost or
delayed packets), the DBA will keep trying to send
messages to the node, as long as the NTA still shows :
the node as up. Every three retries it will attempt
to restart the APE. The APE will kill itself if
contact with the monitor is lost for more than forty

minutes.

12. Scenarios
During normal opération, there can be several
pathological conditions. This section describes how

the protocol handles these situations.

12.1 The Monitor crashes or the DBA crashes
The DBA saves the node data to disk after each

successful upload. After a crash, the data is
restored from disk to the last known stable

configuration. Then the DBA sends 'send changes'

WO 89/07377

PCT/US89/00352

-78-

messages to all reachable APEs and only changed blocks
are uploaded. If the NTA notifies the DBA of any
newly configured nodes, the DBA sends 'send all'
messages to these nodes to uploéd their entire
database. The DBA does not attempt to reach nodes
that are currently down.

12.2 The Link State or Node State Changes
In this case the NTA notifies the DBA of link
down then up and/or node down then up states. The DBA

marks the node or nodes as down and does not attempt

to reach these nodes. When an up state is received
from the NTA, the DBA sends appropriate ‘'send changes'
messages to all the nodes or the node . in question.

12.3 The IDNX Node. Crashes or the DBAPE Crashes

This is .a wvirtually transparent event to the
monitor. If£f the node or the APE crashes, no loss of
data occurs, and the worst problem is only that the
APE will not initiate any change messages until the
DBA times out regquests them. v

"12.4 The DBC Crashes

Since the APE does not rely directly on the DBC,
this is a transparent event to the monitor.

IX. Network Topology Appiication Design

1. Introduction

The network topology application NTA is a task
runhing on the monitor which is responsible for
maintaining information about the topology of the node
network. The NTA communicates with the network

manager task on the local node to retrieve the

®

WO 89/07377

PCT/US89/00352

-79-

topology map data. No special interface (APE) on the
node is required. When changes in the topology occur,
the NTA updates its internal topology map and notifies

other tasks of the changes.

2. Topology Information Retrieval

The NetMgr tasks in each node maintains a map of
the network topology. This map is an array of
MAXNODES by MAXLINKS (250 * 32). For every mnode
number, each rdw contains the list of neighbor nodes,
terminated with a null. A node with no neighbors is
not. in the network, i.e., DOWN. Associated with the
link to each node is a link cost and link attributes
(SATELLITE vs. TERRESTRIAL, etc.).

Associated with each row of the topology map is a
version number (RowVersion) which is incremented each
time that row is changed. A checksum of all of the
version numbers (Total Checksum) is maintained to
indicate the current configuration of the topology °
map.

On the monitor, the NTA maintains its own version
of the current topology map. At NTA task startup, the

_map is initialized to all null rows with RowVersion's
~of 0 (NO_PATH EXISTS). Periodically (say every 30

seconds), the NTA polls the node NetMgr or .its
neighbor node to see if the Total Checksum has
changed. If so (and at NTA staftup), the NTA then
queries the NetMgr for its RowVersions and for each
one that has changed, the NTA queries chénged-rows and
updates its topology map.

The NTA must detect when the link between the
monitor and the local node goes down (ex., an error
return when attempting to poll the node, or a message

from the network interface task). When this happens,

WO 8907377

PCT/US89/00352

-80—-

NTA re-initializes its current map (all nodes DOWN)
and sends updates to other tasks (described later).

2.1 Node Software Requirements

The NetMgr will need to handle message types to
query the TotalChecksum, RowVersions, and RowData.

3. Communication with Other Applications

When a new node comes up in the network, the NTA
first checks in the monitor database to see if the
node is in this monitor's domain. If not, then NTA
does not informvany other task. If the node has been
configqured, a further check is made to determine if
the software version running on the new node is
compatible with the monitor. If so, the NTA then
informs the database application DBA with a "Node UP"
message (NTA-NODE-UP-MSG). When the DBA has a current
copy of the node's database, it sends a message to

NTA. Then the NTA sends "Node -UP" messages to the7

event application EVA, alarm table application ATA,
and MAGIC. o

When they start up (or receive a RESET messagé
from the NTA), the EVA, DBA, ATA and MAGIC should
assume all nodes are down and then request the

complete set of nodes which are UP by sending a RESET

message to the NTA. When the NTA restarts, it must

.send a RESET message to the other tasks to notify them

to request the complete set.
When a node goes down, the NTA sends "Node DOWN"

messages (NTA-NODE-DOWN-MSG) to each of the other
applications.

&«

"

WO 89/07377

PCT/US89/00352

-81-

4. Configuration Tool Interaction

When a node is added or deleted from the monitor
domain by the configuration tool, it updates the
domain database and then sends a message to NTA. This
causes NTA to re-~read the database to determine which
nodes were added or deleted from the domain.

If a node is added, NTA checks its topology map
to determine if the node is currently in the network
and has a compatible software version. If so, it then
follows the same procedure as for a "Node UP" change
in topology. If not, nothing else is done. ’

If a node is deleted, NTA checks its topology map
to determine if the node is currently in the network
and has a compatible software version. If so, NTA

" sends "Node DELETED" messages (NTA-NODE-DELETED-MSG)

to the other application tasks. (This may be treated

‘the same as "Node Down" by some tasks.) If not,

nothing else is done.

5. Monitor Database quate

The NTA maintains an internal topology map for
its own use (ex. to determine what has changed in the
network). It does not create or update tables in the

‘monitor database. ' If other applications develop a

need to know about the full topology map, then a
message can be defined to transfer that information.

X. Conclusion

The foregoing description of the preferred
embodiments of the present invention have been
presented for purposes of illustration and
description. It is not intended to be exhaustive or
to limit the inventién to the precise form disclosed.

Obviously, many modifications and variations will be

WO 89/07377

PCT/US89/00352

~82-~

apparent to practitioners skilled in this art. The
embodiments were chosen and described to explain best
the principles of the invention and its practical
application, thereby enabling others skilled in the
art to understand the invention for various
embodiments and with various modifications as are
suited to the particular use contemplated. It is
intended that the scope of the invention be defined by
the following claims and their equivalents.

I

WO 89/07377 ' PCT/US89/00352

-83-

APPENDIX A

Formats of Messages between the ATA and the ATAPE

37 C.F.R. §1.96(a) (2) (ii)

WO 89/07377 PCT/US89/00352

84
/""'..‘......'._‘."Q'l“ﬁ.ﬂ.l'....."'!'t.l.t.‘ttt....l't.'..l’.'
l' - LR IR O 3 ./
VA AtaResetMsg ';
/= ‘

. . ~/
/" This message is u§ed by the ATAPE to notify the ATA that it reset. «/
;' The ATA will then proceed to re-gpen the APE session. -/

-

. . ’ Y 2 . ./
1= This message is also used by the ATA to solicit the list of active =/
5* IDNX nodes in the INCS domain from the NTA. =/

- .
=/

Ift'ttlt'tttttt'tt.tti'ttttttttt.tlrtt'ttattt'ttttttlltttttl-t'-"t'---tt-'lt/
struct AtaResetMsg {

struct ItcHeader Hdr; /* Standard ITC msg header. =/
| short Spare; /* Not used. ' =~/
;

I'.lttlttt.ttltltltittttat.tt-tttuttt'uttlaa--ttt'nn--.t::t:cuingctcn-t--tt-t/

I~ | =/
/= AtaDeleteMsg . =/
/= . ' =/
5' This message is used by the ATA to tell the ATAPE to delete itself. </
= : =/

1".'."".!'."""'.",.".'I."-'.'t.'.—'."'"'tl'l..l'l.""!"‘ tl.l"""'l/

struct AtaDeletelMsqg {

struct ItcHeader Hdc:; /= Standard. ITC msg header. "/
short. _ Spare; /™ Not used. =/

s '
/.gttﬂttl;ttltt'ttlttttttlttttt-;ttttttttttQt.tltttt'ttt.:tc.t--tt-t-tct'cclt/
A ’ - -/
" AtalpenMsqg . %/
/=’ ’ o=/
A This message is used to open a session between the ATA and an APE. =/
/* The ATA initiates the session by sending the OPEN, and the =/
/l* the APE confirms the open session by returning the message. =/
l* : The ATA will always zero the MsgSegNo in the Open message. =/
VA - =/

) 1'.'.'.."'"'..""."."".-'l.ltt'-""I."""'I.'ll’."'."'t.t".ll'I'..'/

struct Ata0OpenMsag {

atruct ItcHeader Hdr; . _ /* Standard ITC msg header. */
unsigned char MsgSeqNum; /* Message # next expected. =/
unsigned short MaxAlarmBlock; /= Max ELM Alarm Log index. */

}s

/ttttttt-titt:tt'tttti-c-t-ltr'ttt'ittttuttttttttl'tt-:"nuqc.g-c-'---t':-n-'/

/= , «/
A AtaNextMsg ' . : ~/
/*) L ¥
Y Al This message is used to solicit the next message from the ATAPE. «/
/= The response is expected to be either an un-numbered IDLE =/
/* . message or a numbered ALARM message. ’ ';
/. . ‘ -
A MagSeqNo is the sequence number expected in the next ALARM :/
l* message sent by the ATAPE. '1'
I' .'."".-'.."..'.'..'.'II""'..'.ﬂ’/

/"'.'.."".'."""""‘"."....."""

struct AtaNextMsg {
' struct ItcHeadex H#dr; 2
unsigned char MsgSeqgNum; /* Message § next expected.

/= Standard ITC msg header. -/

/N

PCT/US89/00352

WO 89/07377 .

85
/ttt-t't-tn-Q..'ttﬁttwt-t---..---t-wt.ttt".--tt---t.t't-t----n-un----'----'-/
/= -/
VAd AtaldleMsg -/
/= =/
/= This message is used to notify the ATA that the ATAPE is alive; it =/
/= is an un-numbered message. The APE sends this message -/
/=) pexiodically when there are no alarm changes to send, to -~ =/
WA keep the ATA from timing the session out. =/
A =/

/"..."'“'"*"....'*I"'.""'I’i"'."*'"'.""i"'*it". 2 22 R 2R 2SR NRN] '-"'/

struct AtaldleMsg {
e struct ItcHeader Hdr; /* Standard ITC msg header. <=/

}:

-
/I"ltttiliti'tt't"'ll!tt*tttt.attw"t"tttt'!ttt*tl’tvat-t:w.'-'n---'--- II"/

/* =/
/* AtaAlarmMsg =/
/* =/
VA . This message is sent by the ATAPE, in response to a NEXT message, =/
;* when there are changes to the Alarm Table to report. ~/
* N . o '/
/* Message format: ' =/
/*) : ~/
/* - + + cmpmmm e n————- to———— R et + =/
/* ! ITC header ! MsgSegNo ! NoAlarms ! Record #1 ! ... ! Record #2 ! =/
/* temmen— + + s E ettt b tm——— tmmm—ce—ca e~ + =f
/* ! <16 bytes> ! <1 byte> ! <1 byte> ! vo=/
/* . '/
/* MsagSeqNo Sequence number expected next by the ATA. -/
VA NoAlarms The Number of alarm records in this message. =/
/* Record n The alarm records which follow will have one of =/
/* the ‘following formats: . =/
/* ' :) =/
/= Record’ Format #1: for reset alarms. : ';
o . R 4
5' ! -t -1 =/
/* ! RecIndex ! Flag ! */
VA t=- + sw—==! */
/* ! <1 byte> ! <1 byte> ! «/
/l . */
/* Record Format #2: for new or modified active alarms: ‘5
/' - »
/* ! + tommemccecna ey S P L Lt + =/
VA ! RecIndex | Flag !AlarmFlag { AlarmCnt ! EventType ! =/
/" + et emenm s e et e mn s et a .S e e w————pe————————— + */
WA | <1 byte> ! <1 byte>! <1 byte> ! <l byte> ! <2 bytes> ! '5
VA : v
/* trmcmccnemefmm s m—————— tmm————————— ' ~/
/" ' ! Deviceld ! OrigTOD ! LastTOD ! */
I* fo—m——————— b ———— fom—e——————— + */
/* ! <4 bytes>! <4 bytes> ! <d bytes> ! '5
/* , . -
/* RecIndex ' The index of this alarm record in the Alarm Table. */
/* Flag Active | Inactive status. A ~/
/= Alarmflag Alarm level, Inactive, Network Significance, .. -/
/= AlarmCnt Count of alarm occurrences. -/
/* EventType Event Type and SubType. -/
/* DevicelID IDNX Device ID of alarming component. */
/* OrigTOD Time that the alarm was first triggered. =~/
/= ‘LascTOD Time that. the alarm was last triggered. '§
/* . -
-.-".---I"/

/.""""""'.".'.""""'.""""'.'""."'I.g""".."'-'.

/* This Alarm Entry format was copied from IDNX Rel 7.5 code. In Rel 7.7 =/

WO 89/07377

86

/-
_,-]1
struct AtaAlarmEntry (

unsigned char Flag;
unsigned char - Count;
struct EventType Event;

struct ElmNetAddr Device;

unsigned int OrigEvent;

unsigned int LastEvent;
L H :
struct AtaNullAlarmRec {

unsigned char Index;

unsigned char Flag;
$define ALARM ACTIVE . 1
#define ALARM_INACTIVE 2
}; . .
struct AtaAlarmRec (

unsigned char Index;

unsigned char Flag;

struct AtaAlarmEntry Alarm;
};

struct AtaAlarmMsg {

struct ItcHeader Hdr;

- unsigned char MsgSegNum;
unsigned . char .- NoAlarms;
unsigned char LastAlarm;
unsigned char spare(3]}.

struct AtaAlarmRec Record(l];

/t
/*
/t
/=
/t

/t
/t
/*

/t
,k

/t
/t
/u
/n

/*
/t
/*
/*
/™
/'A'

PCT/US89/00352

the format was revised, and the coupling between the INCS message.,
and the IDNX message formats was broken!

Alarm Flags, Criticality, etc

of times alarm was triggered.
Event Type of alarm.

Device that triggered alarm.
Event that originally triggered

Alarm record SHORT form:
Alarm Table record index.
APE alarm flag.

- Active alarm.
- Inactive alarm.

Alarm record LONG form:
Alarm Table recorxrd index.
Alarm status:

ELM Alarm record.

Standard ITC msg header.
Sequence number of this msg.
Number of records in message.
Boolean => last msg in ATbl set.

Alarm records.

=/
=/

=/
~/
=/
=/

=/
*/
=/

=/
=/

~/
=~/
*/
=/

®/

=/
=/
*/
=~/
*/

%

WO 89/07377 ‘ PCT/US89/00352

-87-

APPENDIX B

Major Data Structures in ATA

37 C.F.R. §1.96(a) (2) (ii)

WO 89/07377

88

PCT/US89/00352

/t'.tt.!}wr'll"tI'ttll’t!.lttttlt'ttllttttr:trt.tll’r!..tttl:lti--c-:-c't- ..t-/

/.
l.
jt
/'
/t
/%
. /'
/I
/l
/t
/*
/'
l.
/t
/t
/t
/t
['

Global storage layout:

GlobalP is the global pointer to the data area. This will be
registered with the Kernel so that it will be available globally
throughout the program as an extern. Othérwise, it would huve to
be passed between routines, in order to comply with the IDNX
limitation on- program data storage.

gP is defined to be equivalent to GlobalP, as a shorthand reference.

The initialization vars were created for the flexibility of

modifying critical constants easily during debug, and in che fxeld
without a re-compile.

'MagicUpf and "NamUp" register the program’s idea of the status of
the application’s alarm discribution interfaces.

/"""'.'t.t'.""".'."."I.lt'!'*l'*l".tl"t'.

struct GlobalData {

struct TimerBlock
struct NTrec
struct SCB

" shozt

‘short

uasigned int
unsigned short
unsigned short
unsigned short
unsigned short
shoxt

unsigned char
unsigned char

unsigned char

'pTimeis;
NT [MAXNODES+1)

SCT[MAX_APES];

MyNodeNum;

NeighborNode;
SessnTimer;

_ CreateDly;
Openbly;
Watchdog;
DefaultTmr;
MaxRetries;

NamUp;
MagicUp:

Msg{256]);

extern struct GlobalData *GlobalP;
#define gP

Globalr

/'
/'

i/"

/t
/x

/=

/t
/w
/t
/a
/l
/t
/t
/t
/t
/=
/t
/t
/'
/t
/I
/:
/I

A(Timer control block}.
Node Table.

Session Control Table.
The INCS Node number.

Alarm Collection vars:
INCS conectn to INCS net.
Current APE SetTimer val.
Delay following Delete.
Delay following Create.
Session idle timeout.
Default session timer. .
Max # session rexmts.

Alarm Distribution vars:
Boolean for alarm distr.
Boolean for alarm distr.

Used for ErrMsg messages,

... and SQL query.
Imported Global Data Ptr.
Shorthand for Global Prtr.

=/
-/
~/
=/
=/
-/
*/
=/
=/
=/
=/

Y

=/
=/
*/
=/
=/
=/
=/
*/
=/
=/
=/
=/
"/
=/
=/
=/
=/
*/
*/
=/
=/
=/

tl

=/
*/
=/
=/
~/
=/
=/

/t'ttttitt::tttcr-:-.s:ntc'tt/

U

]

"

WO 89/07377 PCT/US$9/00352

839
/t.t"t..t"'ltltttt--I----.-t.-itt--lt-t.'twnttutntlrt-ct't---"-.---.---.--
/" ' : i
/=~ Program Data Structures: -/
.,t -/

/""'.'..-."..."l.'.'tl"...".'."'.'-.l"..'l'l.".l"t-'-'-'I-l.'-.‘.-..t‘/

o~

/' -/.
/* Network Alarm Table Record. */
,' -/
/" The number 95 alarm Fecords in the Alarm Table for a particular ~/
WA APE’s SCB, is dgtergzneg by the size of the ELM’s Alarm Log on the ™/
;: APE’s node. (This size is conveyed at APE session initialization.) =/
=/
;' The NAT alarm records are copied directly from the ELM alarm tables.=*/
L . ' l/
VA There is a linked lis? of alarms for every device which is repre- =/
/" sented in the NAT. This facilitates alarm distribution. =/
l' w/
struct NATrec |{ ,
unsigned char Sts; /* Local status of alarm. =/
#define INITIALIZED 0 /* - Initialized only. -/
#¢define ACTIVE 1 . /* = Alarm is active. =/
#define INACTIVE 2 /" - Alarm is reset. =/
/™ =/
unsigned char ' AlarmLevel; /* Level of alarm: -/
' : /* ~/
$¢define MAX ALARM VAL - 4 /* max alrm */
#define CRI_ALARM . ELM_Critical_Alarm /® assume 4 =/
#define) MAJ | “ALARM ~ ELM | | Major_. Alarm /* assume 3 */
4defina . MIN ALARM. _ . e ELM_Minor_i “Alarm /* assume 2 */
#define INF_. “ALARM ELM ! FYI Ala:m /* assume Y */
#define NO_ALARM 0 PA o=/
tdefine MIN_ALARM VAL 0 /= min alrm */
/= =/
unsigned short Next; /* Next dev alarm in chain. =/
unsigned short Last; /* Last dev alarm in chain. =/
#define NOLINK 999 /> - *null" chain link. */
struct AtaAlarmEntry Alarm; /* Copy of IDNX alarm rec. */
}i
/> T : »/
~/* Node Table record. -/
/* This table sexrves two purposes. It references the APE Session =/
/* Control Block, and it tracks the current status of the nodes in the ~/
/* network. Status information is derived generally from messages "/
/* received from the NTA applxcatxon. When a RESET is received from the =/
/* the current set of nodes defined in the network is read from the -/
/* INCS data base. =/
/* =/
struct NTrec
unsigned char ScbIdx; /* APE SCB index. A
$define NOSCB OxFF /* default SCT index. -/
unsigned char Sts; /* Node status. -/
t#define NODE UP 1 /= - Node accessible. -/
#define ° NODE DOWN .. 2 /= - Node inaccessible. -~/
#define NODE DELETED - 3 /= - Node deletd from ner.*/
3 /= - Default. =/

Jefine NODE_UNDEFINED

WO 8907377

/(tttl’.'tt'tttttttttt-tutrt'wu'tttn't'i'-ltttut-ttt-'t‘an:-rw:.--rt-----

90

PCT/US89/00352

lII..'l,

/=) : =/
/* Session Control Block (SCB) ATA <=> ATAPE. =/
VA ’ =/
/* This data structure contains all of the variables related to a -/
/= particular APE task. Ry
I A fixed number ("MAX_APE") of scb’s are created by InitMem() in =/
VA an array called the Session Control Table (SCT) . =/
l* An scb is allocated to an APE session when an IDNX node is w/
/> added to the INCS network. =/
VAd The SCT index for a given node’s scb is determined from the Node ~/
5' Table (NT) which is MAX_NODES long, and indexed by IDNX =/
* node number, ' v =/
/= : WA
/= The parameter, MaxAlarmMsgs, indicates the maximum number of alarm =/
/* messages which can be received in one logical window. =/
/* The ATA processes a window of messages, i.e., all of the */
VA updates for the ELM alarm table, before distributing alarms =/
/* to MAGIC, or to the NAM. This value is derived from the =/
/* parameter AlarmTbllLen, which is supplied by the APE at =/
/* session open time. =/
/'i"""!'ﬂ'."ﬁ"I'."I.'gst*f'.tt"t"tt"'i'i"' !/
struct SCB { ' /= «/
unsigned char ScbFlg; /* SCB resource status flag.+*/

#define AVAILABLE 0x80 /= =~ SCB is available. =/
#define USED 0x10 /* - SCB in use. =/
#define TMR_ACTIVE 0x01 /* - Session tmr is active.*/
: /™ . =/
unsigned char Spare; /* =/
unsigned -charc “** SessnSts; /* State of APE session. */
unsigned char SessnPendSts; /* Pending session status. =/

short ‘NodeNum; /* Node number of APE IDNX. =/
unsigned char MsgSeqNum; /* Message sequence number. */

char. RetryCnt; /* Session retry counter. =/
unsigned int Timer; /* TOD of next timeout. */
GI_ObjectMsg *pGiAlarmQueue; /* LIFO.Q of pendng distrib.=®/

struct NamUpdateMsg *pNamAlarmQueue;/* LIFO Q of pendng distrib.=x/

struct AtaAlarmMsg *pRcvAlarmQueue;/* FIFO Q of rcvd alarm mags®/
unsigned char. MaxAlarmMsgs; /% APE Alarm msg windowsize.*/
unsigned char CntAlarmMsgs; /* # APE alarm msgs rcvd. =/

short NtaMsgType; /™ Trace of NTA msg type. =/

short ApeMsgType; /* Trace of APE msqg type. =/

short :zaMsggipe; 5' Trace of ATA msg type. '5

short \larmTblLlen; * L(NAT). -

struct NATrec *pNat; /* Network Alarm Table ptr. =/

,A'. /n . Q/

/"""""""l*"."'"' "'R/

L]

WO 89/07377 | PCT/US89/00352

—91f

APPENDIX C

Major Data Structures in ATAPE

37 C.F.R. §1.96(a) (2) (ii)

WO 89/07377 PCT/US89/00352

82
,t"'."t'l"l'.tlw'l"l’l"n't"'wt'l'tttt't'tt't'ttt LER A S S SSsEREREFEEEE] t't'-t---t/
/" ~/
/* Program Structures and Constantcs: =/
]t

-
i'..".'..'.."..‘""'-'.'*"t“‘"t."..*t""'l"'k"""'.“'Iﬁ'k".l "-..'.'/

7= =/
/* Session Control Block (scb) ATAPE <=> ATA protocol. =/
J’l) ‘./
3truct SCB (o .
unsigned char SessnSts; /* State of ATA session. =/
#define '~ DORMANT_SESSN 1 /* APE created state. x/
#define OPENING_SESSN 2 /* Open in progress state. =/
#define - IDLING_SESSN 3 /* Active and idling. =/
#define ALARMING_SESSN 4 /* Active and snding alarms.*/
unsigned char MsgSeqgNum; /* Message sequence number. */
short NodeNum; /* Node number of INCS. =/
struct AtaAlarmMsg *pAlarmMsg; /* A(buffrd alarm sent msg).=/
struct AtaAlarmMsg *pAlarmQuene; /* A{queued up alarm msgs). =/
short AtaMsgType; /* Trace of last ATA msgq. =/
short ApeMsgType; /* Trace of last Ape msg. x/
}: :
FL */
/* ELM Control Block (ecb) ATAPE <=> ELM protocol. =/
/* . I/
strxuct ECB (

- unsigned char Sts; /* State of the protocol. ~/
#define POLLING_SUMMARIES 1 /* Poll alarm summary state.¥*/
#define . READING_ALARMS 2 /* Read alarm table state. */

int : ' TotalAlarmCnt; /* # Total alarms last poll.=x/
int ActiveAlarmCnt; /* # Active alarms last pol.*/
struct MsgAlarmSummary *pRegSummMsg; /* A(msg for alarm summ req) */
. short ReqAlarmBlk; /* Alarm Blk & in last req. =/
#define NO_REQUEST -1 /= = no req outstndng. =/
/* */
stzuct Tid ElmTid; - /* Tid of serving ELM. =/
short RetryCnt; /* Poll retry counter. =/
short ElmMsgType; /* Trace of last ELM msg. =/
short ApeMsgType; /* Trace of last APE msg. ~/
}:
/' '/
/*= Local Alarm Table: ~/
/= : ~/
struct ATRecord {
unsigned char ApeFlg; /* APE alarm flags: =/
#define CHANGED 0x80 /= ~ alarm rec changed. =~/
#define INACTIVE 0x40 /= - alarm activejinacc. =/
$¢define INITIALIZED 0x01 /~ - alarm rec emprty. ~/
unsigned char spare; /= -/
struct AtaAlarmEntry Alarm; /* ELM alarm record. ~/
}:
/= =/
/= Global storage layout: ' .5
A *

/= GlobalP is the data pointer registered with the Kernel. =/

(e

[t 2

WO 89/07377

PCT/US89/00352
93

P A gP is defined to be equivalent to GlobalP, as a shorthand reference.*/
I ‘ ~/
A The AlarmsPending boolean is a switch between the ATAPE<=>ELM =/
VA interface and the ATAPE<=>ATA interface. It is set when new alarms =/
FA are received from the ELM. It is reset when all outstanding alarms. =/
1* sent to the ATA. «/
" . =/

s gstruct GlobalData
struct TimerBlock *pTimers; /* A{Timer control block). =/
struct SCB schb; /* ATA session Control Blk. "/
. struct ECB ecb; /= ELM Control Block. x/
' /* */
/* Alarm Table vars: L
struct ATRecord AT(FT_Alarms]; /* Local Alarm Table. ®/
unsigned char AlarmsPending; /* Boolean switch for Alarms*/
unsigned char ChngdAlarmCnt; /* # changed alarm records. x/
unsigned char ATLocked; /* Alarm Table semaphore. =/
unsigned char CntATblCopies; 5* # copies before match. w/
: 4 N /
/* Session variables: "/
short MyNodeNum; /* This node number. */
short MyInstance; /* Instance of this task. x/
unsigned int SessnWatchdog; /* Sessn idle/abort timeout.*/
unsigned short Sessnldle; /* Sessn idle/response tmr. */
unsigned short 'ElmWatchdog; /* ELM idle/repeat timeouc. =/
unsigned short ElmPoll; /* ELM poll summary timer. */

| F
$if UNITTEST

extern struct GlobalData #*GlaobalP:

#endif

#define gP * ((struct GlobalData *) GlabalP)

/'

e

Imported Global Data Ptr.*/

Shorthand for Global Ptr.*/

WO 89/07377

PCT/US89/00352

—94-

CLAIMS

_ 1. An apparatus for gathering and displaying
information concerning status of a communications
network, the network including a plurality of
distributed switching nodes and a plurality of links

"connecting the switching nodes, each of the switching

nodes performing communications functions, maintaining
a node list of alarm conditions for the node, and
maintaining a node configuration database identifying

a configuration for the node; the apparatus

comprising:

a monitor node, coupled to a first switching node
of the plurality of distributed switching nodes,
comprising

an operator input interface,

first means for maintaining topology data

inaicating the +topology of the network and for .

supporting a first protocol with the first switching
node, ‘

second means for maintaining a monitor list
of alarm conditions entered in the node event logs in
the network and for supporting a second protocol with
the plurality of distributed switching nodes,

third means for maintaining a monitor
database indicating the configuration of the switching

‘nodes as entered in the node configuration databases

in the network and for supporting a third protocol
with the plurality of distributed switching nodes, and

display means, responsive to operator inputs
identifying a subject node in the network and coupled
to the monitor database, the monitor 1list of alarm

conditions and the topology data, for displaying

(]

WO 89/07377

PCT/US89/00352

-95—~

configuration data about the subject node, the network
topoiqu and the alarm conditions to the operator;

means, oOn the first switching node, for
generating the topdlogy data in response to the
communications functions performed on the node and for
sending, in response to the first protocol, the
topology data to the first means; and

means, on each of the plurality of distributed
switching nodes in the network, coupled to the node
event log on the node, and responsive to the second
protocol, for packaging and sending data indicating
alarm conditions entered in the node event log to the
second means through the network;

means, on each of the plurality of distributed
switching nodes in the network, coupled to the node
configuration database on the node, and responsive to
the third protocol, for packaging and sending data
from the node configuration database to the third)

means through the network.

2. The apparatus of claim 1, wherein the
display means comprises a display monitor and a
graphics processing means for generating a plurality
of display windows on the display monitor, and wherein
a first window of the plurality of display windows
graphically displays the network topology, a second
window of the plurality of display windows graphically
displays the configuration data about the subject
node, -and a third window of the plurality of display
windows graphically displays the 1list of alarm

conditions.

WO 89/07377

PCT/US89/00352

-96-

3. The appératus of claim 2, wherein the
graphics_processing means further includes means for
highlighting the network topology displayed in the
first window in response to at least one alarm

condition in the list of alarm conditions maintained '

by the second means.

4, The apparatus of claim 1, wherein the means,
on each of the -plurality- of distributed switching
nodes in the network, for packaging and sending data
from the node configuration dJdatabase to the third
means includes:

means for detecting changes to the . node
configuration database; and

means, responsive to the third protocol, for
generating a message including at least a portion of
the detected changes, and for sending the message to
the third means through the network.

5. The apparatus of claim 4, wherein the node
configuration database includes a plurality of blocks
of data and a block checksum associated with each
block, the means for detecting changes to the node
configﬁration database includes:

méans, -respdnsive to the third - protocol, for
generating a total checksuln for all blocks in the node
configuration database; and

means for comparing a currently generated total
checksum with a previously generated total checksum to
detect changes to the database.

L)

2)

WO 89/07377

PCT/US89/00352

-97-

6. The apparatus of claim 1, wherein the means,
on each of the plurality of distributed switching
nodes in the network, for packaging and sending data
indicating alarm conditions entered in the node list
to the second means, includes

means for detecting aiarm_conditions entered in
the event log of the node; and

means, responsive to the second protocol, for
generating a message including at least a portion of
the alarm conditions and for sending the message to
the second means through the network.

7. The apparatus of claim 6, whexrein the node
list includes an alarm table and a numerical indicator
associated with the alarm table indicating a number of
alarm conditions in the table, and the means for
detecting alarm conditions includes

means for comparing a current numerical indicator:
with a previous numerical indicator to detect changes
to the alarm table.

.

WO 89/07377

PCT/US89/00352

-98—~

8. The apparatus of claim 1, wherein each of
the plurality of switching nodes maintains a node
event log 1listing event records for the node and
further including:

fourth "means, on the monitor node, for
maintaining a list of event records entered in the
node event logs in the network and for supporting a
fourth protocol with the plurality of distributed
switching nodes; and

means, on each of the plurality of distributed
switching nodes in the network, coupled to the node
event log on the node, and responsive to the fourth
protocel, for packaging and sending data indicating
event reports entered in. the node event log to the
fourth means through the network.

9. The apparatus of claim 8, wherein the means,

on each of the plurélity of distributed switching

nodes in the network, for packaging and sending data
indicating event records entered in the node event log
to the fourth means, includes
' means for detecting event records entered in the
event ldg of the node; and

means, responsive to the fourth protocol, for
generating a message including at least a portion of
the event records and for sending the message to the
fourth means through the network.

10. The apparatus of claim 1, wherein the first
protocol is a positive acknowledgment protocol with a

.window size of one.:

@

[N

.3

WO 89/07377

PCT/US89/00352

-99-

11. The apparatus of claim 1, wherein the second
protocol is a positive acknowledgment protocol with a

window size of one.

12. The apparatus of claim 1, wherein the third
protocol is a positive acknowledgment protocol with a

window size of one.

13. The apparatus of claim 1, wherein the
plurality of switching nodes comprises a plurality of
processing units with tasks performed at the node
being distributed among/between the plurality of
processing units, and further wherein the task
maintaining the node event log and the means, coupled
to the node list of alarm conditions on the node, and
responsive to the second protocol, for packaging and
sending data indicating alarm conditions entered in
the node event log to the second means through the
network run on one processing unit.

14. The apparatus of claim 13, wherein the.
communications functions run on a master processing

unit other than the one processing unit.

WO 89/07377

PCT/US89/00352

-100-

15. The apparatus of claim 1, wherein the
plurality of switching nodes comprises a plurality of
processing units with tasks running at the node being

distributed among/between the plurality of processing

units, and further wherein the task maintaining the
node configuration database and the means, coupled to
the node configufation database on the node, and
respbnsive to the third protocol, for packaging and
sending data from the node configuration database to
the third means through the network xrun on one
processing unit.

16.. The apparatus of claim 15, wherein the
communications functions run on a master processihg
unit other than the one processing unit.

[£]

»,

£

(%

WO 89/07377

PCT/US89/00352

-101-

17. An apparatus for gathering and displaying
information concerning status of a communications
network, the network including a plurality of
distributed switching nodes and a plurality of links
connecting the switching nodes defining a network
topology, each of the switching nodes performing
communications functions, maintaining a node event log.
including alarm conditions for the ‘node, and
maintaining a node configuration database identifying
a configuration for the node; the apparatus
comprising:

first monitoring means, coupled to a first
switching node of the plurality of distributed
switching nodes, for gaﬁhering through network nodes
and links, and displaying to an operator'information
concerning the network topology, alarm conditions in
the network.andmcnnfiguratioﬁs for selected nodes; and

second monitoring means, coupled to a second:

'switching node of the plurality of distributed

switching nodes, for gathering through network nodes
and links, and displaying to an operator information
concerning the network topology, alarm conditions in

the network and configurations for selected nodes..

WO 89/07377

e

f

MONITOR NODE

INTERFACE

SWITCH OPERATOR

5

12 .
._Z. SWITCH
14 5

- FIG-1

(W

- SW f——-
66
MON 1 |—sw
SV -+
68—1L

AAOAOEAMZ

| SWITCH ﬁ_-

PCT/US89/00352

/2

/

| SV_ITCHﬁ—)

SWITCH| 9
| N

Nsw

| SwW
A

WO 89/07377

PCT/US89/00352

;z/ (6

ICONS 59| SYSTEM MESSAGES (TEXT) g5
L
E
OPERATOR G
INTERFACE E
(TEXT) N
D
28 , 29
NODE X
gg 425
ALARM TABLE - pio°**°
(TEXT) 2 |3
27

FI1G.—2

SUBSTITUTE SHEET

WO 89/07377

PCT/US89/00352
3//¢)
33) EVENT LOG 37
S
/ APPLN-MONITOR
~ DISPLAY
PROCESSOR |
- ALARM TABLE |
- - APPLN-MONITOR [
. , , MONITOR 1
USER INPUT] - NODE
INTERFACE |
| | [moeotoey oata | . F]G, —3
,// APPLN-MONITOR T~
38 .
DATEBASE
APPLN-MONITOR T— 3
39
0
HDLC PORT SWITCHING
' ’ > NODE
w—"
///,45 19
HoLe PORT K “ > MONITOR
NODE
46
51 L
| COMMUNICATIONS | + -
N\ TASKS [WAETWORK 2 47
MONITOR 1.
ALARM TABLE
TE .
INTERF AL EVENT LOc 7%
. (ALARM TABLE)
MONITOR 1 ' SWITCHING
S21EVENT LOG o NODE
INTERF ACE CONFIGURATION ' .
| — DATA BASE FIG."'4
MONITOR 1 | |
DATABASE
TERFACE TOPOLOGY
_50
(53 APPLN-NODE |

etmaTITUTE SHEET

WO 89/07377

PCT/US89/00352

5/ (G
Even‘tLogM'sg EVAPE Message 1
g | I7C Header
Token Count Packet Seq
Time Stamp Event Count
Flog Flags
Alarm Block Token Count
Event Time Stamp
| Orig Node T
Orig TID Map [4]
Value [43 Token 1
Map [4] . | Token 2
Token [81 / ' more J
1177077777, Svents 1

Event Log Recorg

DB Event Reco?d

Token CQOn‘t ’(0) Nodeld <5
Epoch Secs 1) LEven'tTyp'e' l¢ay
___Flag o | SubType Jeas
Alarm Block [¢3) OrigTID (6>
Event ‘-(4) A Fpoch&ecs’ 65
Orig Node (S Alo;rmLevel 0=
Orig TID B NetSig @
Value 41 [75-c1py Value 1-12 [(7)~capy
Map [47 AD-(14) ' Translation
Token [8] [15y-¢apy |

S'todng event records
FIG~16

SIHINKTITIITE crimes

WO 89/07377

NTA 1 ~105
l X
NodeDeleteMsg ResetMsg
"~ NodeDownMsg
NodeUpMsg
ResetMsg
106.- l
3\
) —— .
DBS EVA T—104
—

OpenSessionMsg
MsgFilterRequest
NxtPktMsg
CloseSessionMsg

|

EvPktMsg
ConfirmMsg
Re JjectMsg

PCT/US89/00352

7 16

ELM

4+—103

EvenilLogMsg MsgFilterRequest
NoEventMsg MsgNextEvent

- CantServMsg

|

EvAPE

102

|

EvPktMsg
ConfirmMsg
Re jectMsg

T

OpenSessionMsg
MsgFilterRequest
NxtPktMsg
CloseSessionMsg -

TRANSFER SERVICE |

General systems overview—EVA

before wrop

FIG-6

most recent ev

wrap

oldest event

point

<—
i
2
3

'\/101'
ofter wrap
previous ev 1 1
' most recent ev_|2x new
oldest event |3 (1) Wrap
next to oldest |4 (&
n

Event log snapshot before and ofter a wrap

FIG.—7

[~ B] - Y L _TT s

— -

WO 89/07377 PCT/US89/00352

o[l
EvA —» EVAPE
ITC - Header
FiiterCount — number of MsgFilterRequests following
UNUSED — for future extensions ' window size
(PktGrant)

Open Session Messoge Structure

FIG.-9S

EvAPE —» EVvA

ITC — Header

Pk'tSvequor — last packet sequence number sent

Confirm Message Structure

FIG-10

EvA — EVAPE

JTC - Header
PktSegNbr |— pd’cke't sequence number expected
UNUSED — for future extension 1 dynamic adjustment

of window size
Next Packet Message Structure

FIG.—-11

EvA —» EVAPE

ITC - Header

PktSegNbr |— last packet sequence number received

Close Session Message Structure

FIG-12

..... Y e e l— ~4 5 | i —n

WO 89/07377

PCT/US89/00352

-7/16

EVAPE —» Eva

ITC - Header

PktSegNbr |— packet sequence number

EvCount — number of events In the poacket

Flags — Event Log Wrop Flag, ELM Crash Flag
|

\‘__
'Uld-DfD<l"1

Event Packe+t Message Structure

FI1G.-13

timeout & lost MsgFilterReques+t J MsgFilterRequest ¢4).
ConfirmMsg ; MsgFitterReques+ (3>

v | 1402

’ open

NodeUpMsg)
DpenSesslonMsg ¢))
¥ NodeUp ;

DpenSess!onMsg @

ConfirmMsg
RejectMsg ; ¢5) NxtPktMsg (g
3rd timeout & :

last Mngll'terRequeS't) €6)
timeout & .

last DpenSesslonMsg) D
Nod'eDownMsg J Aan

1'401. NodeDeletMsg CloseSesslonMsg (12 ' f1403 |
llCloselF: Next |

NodeDownMsg j D

NodeDeletMsg C.loSeSesslonMsg a
Eka‘tMsg(Crash) 3 A3

3rd timeout J a4
ReJec:‘tMsg) 1S

EvPktMsg (n) } NxtPktMsg (n+1) (92
timeout J Nxth‘tMsg) Ao
EvA state 'tro.nsmlsslon diagram

FIG.-14

WO 89/07377 PCT/US89/00352

gl

OpenSessionMsg ; ConfirmMsg (4)
CantServMsg ; MsgFilterRequest (3)
MsgFilterRequest ; MsgFilterRequest (2)

l 1/1502

» open

OpenSessionMsg
ConfirmMsg (> OpenSessionMsg

ConfirmMsg (9

gr‘d CantServMsg ; EventlLogMsg |

ejectMsg (5

CloseSessionMsg ; 10> NoEventMsg ;
ConfirmMsg &

MsgNextEvent (&)

1503
[

Next (¢—

'CloseSesslonMsg) €102
3rd timeout ; EvPktMsg(Crash) (11
CantServeMsg ; EvPktMsg(Crash) (12>

NxtPktMsg y EventLogMsg |
Re jectMsg 3D : NoEventMsg ; MsgNextEvent (7)
. NxtPktMsg ¢(n) j EvPktMsgin) (8)

EvAPE stote transmission diagram

FIG.-15

SUBSTITUTE SHEET

b d

WO 89/07377 PCT/US89/00352

1z
MONITOR IDNX
* DBS NTA | 178
173— 1 174~/ l oM
170 |
\‘ T(177
AT T » ATAPE
175\‘1 176\' l 172j I
NAM MAGIC ELM
ATA DATA FLOW
FIG-17/
atA ATAPE
ATA OPEN MSG (0) - >
- - ——ATA_OPEN MSG (0
ATA NEXT MSG <1) >
- s ATA_ALARM MSG (1)
ATA_NEXT_MSG (2 —

Session Initialization
FIG.-18

SUBSTITUTE SHEET

¢

WO 89/07377 PCT/US89/00352

/o//(,
ATA ATAPE
ATA_NEXT MSG (2 - > :
l (idle timer)
- ATA_}DLE MSG
l (alarm changes)
‘ - ATA ALARM MSG (&
ATA NEXT_MSG (3 > - -
(icdle timer)
- ATAL}DLE_ﬂSG
Normal Session Protocol
FIG.—-19
ATA ATAPE
adle _ (reset
timer) : occurs)
ATA NEXT MSG >
- T- ATA_RESET MSG
- ATA OPEN MSG ® > :
. TT- . _ ATA_OPEN_MSG ®
ATA NEXT MSG <1 ~ > .
- T- ATA_ALARM_ MSG D

“ATA_NEXT_MSG (2 - -

ATAPE Reset Scenarlo

FIG.-20

PCT/US89/00352

WO 89/07377 '
11/16
MONITOR NODE : IDNX
2101 |database | | [INCS database 2105\
: Aapplication f¢—» application ' |
DBA " | «BA) : (DBAPE) IDNX (dlbc)
Translate [Y | dotabase (32k)
| | 128 byte klock|
|
| l 2102 | sdip
database | status
(ORACLE> ' message
: . | checksums
]
l 2106
v l Ve
Network : IDNX
1 Topology o
2103 application | for real-time
(NTA> l trunk Information
|

FIG.-21

NTA 2201 2203 NTA
er%§§w linked list of dgg%l‘iée
| . _node data
a 2l k> 5 ,_’106#

2204

2202 2208
/mde#und whether we ‘have data’,
NTA " pode up/down state,

node up/down->{DBA node data _'ItTC' n:\ssuge pointer,
hdlc up/down ranster In progress (exchange#),

- timer counts, and ‘ack’ fallures.

-

pending — checksunms _
btocks . and dota folocks awalting validation
- ~ge07
checksums |— validated block checksums
N
—{N\— 2205
datobase

— validoted datobase data blocks
blocks N\EEOG

oracle misc |— oracle checksum, card id's
- 2209

FIG-22

ecnpeTiTITE: CUIEET

WO 89/07377

Auto timer expired or
Incoming message from DBA

(Send All, Send Changes, Ack)

2301\' / 2302 \

PCT/US89/00352

Bt

dirty blocks collected
Into outgoing message
(data loaded directly

from databkase Image or
real-time data blocks)

/ 210S

checksums IDNX (dbc)
—® databose & databose
- real-time (32K>
dirty flags checksums) 128 byte
datobase & [¢—— compared block
real—time and dirty
flags set
real-time for changed change to
| checksums ~ blocks dd.yo?loase
\2303 | |
real-time 2306
data . \
\ checksums
] .

2304J

real-time data 2307

and checksums

updated by
messages from
communication task

change +to
trunk status
(neighbor node,
neighbor card,

connection status)

FIG.-23

SURSTITUTE SHEET

WO 89/07377 PCT/US89/00352

13716
Message Exchange Protocol

(Normal)

DBA DBAPE (IDNX)
message type exch # exch # message type

Send Changes 2e

<+——— 22| db Changes1
Ack 1 |
| 22 | db Changes 2
Ack 2 |
ee db Changes 3
Ack 3 |22 >
~ db Changes 4
ACK 4 |22
All OK
FIG.-24
_ DBA _ DBAPE (IDNX)
message type exch ¥ exch # message type
21 v
—1 0 db Changes'1

Ack 1 ce —»
— 22 db Changes 2

Ack 2 | @22
- dib Changes 3
Ack 3 L |
.22] db Changes 4.
ack 4 |22 |

22 | All OK

(A

WO 89/07377 PCT/US89/00352
14716
Message Exchange Protocol
(Lost Messages)
DBA | DBAPE (IDNX)
message type exch # exch # message type

Send Changes |22 [—»
+—] 22 dib Changes 1
Ack 1 |22 —» ’

| <4———- 22, db Changes?2

Ack 1 [23 |—> _ -
4_—-—-E?_33 db Changes 2

Ack 1 _ |
4._—-—--E-2_4:} db Changes 2

Send Changes IBS ——’

| «——{25] db Changes1
FIG.-26

DBA DBAPE (IDNX)
message type exch # exch # message type

Send Changes |22 ——»

«—— 22| db Changes1

Ack 1 [22 F———»
MTon 1
Ack 1 ,23 [———»
Ack 1 |24 |
*— 24 l dib Changes 2
Ack 2 = .
«— 24 Atl OK

FIG—-27

elReTITIITE QREET

PCT/US89/00352

WO 89/07377
5|l
Message Exchange Protocol
(Out. of Syno
¢ DBA DBAPE_(IDNX)
message type exch # exch # message type

(50

Send Changes e —»
‘ <+— 22| db Changes 1

Ack 1 ee

Ack 1 |23
<— 23 db Changes 2
discard exch #22 msg = <«— 22 db Changes 2

Ack 2 |23 [——»
<+ 23 All OK

FIG.-28

‘ DBA _ DBAPE (IDNX)
message type exch # exch # message type

I

0 dio Changes'1

Send Changes 22

Ack 1

ce dio Changes |

discard exch #22 msg ‘
: I 83] db Changes 2

Ack 2
» < db Changes 3
Ack 3 | @3 >

<«— 23| All OK

FIG.—-29

enimeTITIITE SHEET

WO 89/07377

PCT/US89/00352

16/t

Message Exchonge Protocol

(Pathologicald
DBA DBAPE <(IDNX>
¢ message type exch # " exch # message type
3 Send Changes 2e |
ce db Changes 1
Ack 1 22 = ..
«——] 22] db Changes 2
- ce
Ack 2 Node Crashes - DBA restarts
Ack 2 |23 [——»
discards acks - won’t start
Ack 2 | 24 checking un‘tlloi ‘send changes’

Send Changes

Ack 2

Monitor Crashes —-DBA restarts

44— 25

dato restored from dato files

Send Chonges
ack 1 [T —r
Ack 2

+— |

1

: |
Ack 3 |1 [—» _
) ----{13
Ack 3 | 2
0
Ack 1 3 |———»
. |] 2]
discard exch #2 message
3

F1G.~30

. -
b i - ’“!.3?"' 1
cumTITIITE SRk £

db

dio

db

db

cio.

All
dbo
dio

All

‘send all’ messoge Is received

Changes 2

Changes 3 *

Changes 1
Changes 2
Changes 3

0K

-Changes 1

Changes 1

OK

&,

INTERNATIONAL SEARCH REPORT
International Application No. o

I. CLASSIFICATION OF SUBJECT MATTER (it several classification symbols apply, indicate alf) &.
According to Internationat Patent Classificatlon (IPC) or to bath National Classification and 1PC

IPC {4): H 04M 15/26; HO4M 15/32 USCL. 340/825.06

il. FIELDS SEARCHED

Minimum Documentation Searched 7

Classification System . Classification Symbols
us 3407 825.16,825.17,825.06,825.07; 358 84; 375/ 5
379/9,10,11,12,13,14,49,63; 370/ 13,17
Documentation Searched other than Mini D tati

to the Extent that such Documents are Included in the Flelds Searched ®

IIl. DOCUMENTS CONSIDERED TO BE RELEVANT °

Category ® Cltation of Document, 1 with indication, where appropriate, of the relevant passages 2 Relevant to Claim No. 3
X US A, 4,464,543 (Kline et al.) 07 August 1984 1,4-9,13-16
¥ {see entire document) 2,3,10-12,

* Special categories of cited documents: 10 w™ la!érﬁdot;t’srmt pu:lishmii after ﬂx{g initue'n::ﬁonalnﬂll%g dgf;
; . or priori e and not in conflict w o application
A" g:‘nzlﬂgzadfgg?%}geagﬂgg‘,:}z:';:é;he art which 1s not cited éo understand the principle or theory underlying. the
invention
E ?i?i't:ie';iate m but p on or after the internationat “x» document of particular relevance; the claimed invention
9 . cannot be considered novel or cannot be considered to
=L" document which may throw doubts on. priority ctaim(s) or invoive an inventive step

which is cited to establish the publication date of another wy® document of particular rel the claimed ir o
citatlgn of othar special reason (as specified) cannot be con:idered to involve an inventive step when th
=0" document referring to an oral disclosure, use, exhibition or. document is combined with cne or mora other such docu-
other means ts, such bination being obvious to a person skilled
p~ document published prior to the international filing dats but in the art. :
later than the priority date claimed ug* document member of the same patent family
V. CERTIFICATION _
Date of the Actual Completion of the Int: tional Search Date of Mailing of thl_n internationa) Search Report
19 April 1989 , N
International Searching Authority . Signature of Autho

ISA/US Eric 0. Pudpud

Form PCTASA210 (sscond shest) W.im

This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original
documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

() BLACK BORDERS

U IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

a FADED TEXT OR DRAWING

0O BLURRED OR ILLEGIBLE TEXT OR DRAWING

Q SKEWED/SLANTED IMAGES

0O COLOR OR BLACK AND WHITE PHOTOGRAPHS

U GRAY SCALE DOCUMENTS |

(] LINES OR MARKS ON ORIGINAL DOCUMENT

U REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

C] OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the image

problems checked, please do not report these problems to
the IFW Image Problem Mailbox.

	2004-12-08 Foreign Reference

